It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Although most patients can recover from SARS-CoV-2 infection during the short-term, the long-term effects of COVID-19 on the brain remain explored. Functional MRI (fMRI) could potentially elucidate or otherwise contribute to the investigation of the long COVID syndrome. A lower fMRI response would be translated into decreased brain activity or delayed signal transferring reflecting decreased connectivity. This research aimed to investigate the long-term alterations in the local (regional) brain activity and remote (interregional) functional connection in recovered COVID-19.
Methods
Thirty-five previously hospitalized COVID-19 patients underwent 3D T1weighed imaging and resting-state fMRI at 6-month follow-up, and 36 demographic-matched healthy controls (HCs) were recruited accordingly. The amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) was used to assess the regional intrinsic brain activity and the influence of regional disturbances on FC with other brain regions. Spearman correlation analyses were performed to evaluate the association between brain function changes and clinical variables.
Results
The incidence of neurosymptoms (6/35, 17.14%) decreased significantly at 6-month follow-up, compared with COVID-19 hospitalization stage (21/35, 60%). Compared with HCs, recovered COVID-19 exhibited higher ALFF in right precuneus, middle temporal gyrus, middle and inferior occipital gyrus, lower ALFF in right middle frontal gyrus and bilateral inferior temporal gyrus. Furthermore, setting seven abnormal activity regions as seeds, we found increased FC between right middle occipital gyrus and left inferior occipital gyrus, and reduced FC between right inferior occipital gyrus and right inferior temporal gyrus/bilateral fusiform gyrus, and between right middle frontal gyrus and right middle frontal gyrus/ supplementary motor cortex/ precuneus. Additionally, abnormal ALFF and FC were associated with clinical variables.
Conclusions
COVID-19 related neurological symptoms can self heal over time. Recovered COVID-19 presented functional alterations in right frontal, temporal and occipital lobe at 6-month follow-up. Most regional disturbances in ALFF were related to the weakening of short-range regional interactions in the same brain function.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer