It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Various predictive models have been developed for predicting the incidence of coronary heart disease (CHD), but none of them has had optimal predictive value. Although these models consider diabetes as an important CHD risk factor, they do not consider insulin resistance or triglyceride (TG). The unsatisfactory performance of these prediction models may be attributed to the ignoring of these factors despite their proven effects on CHD. We decided to modify standard CHD predictive models through machine learning to determine whether the triglyceride-glucose index (TyG-index, a logarithmized combination of fasting blood sugar (FBS) and TG that demonstrates insulin resistance) functions better than diabetes as a CHD predictor.
Methods
Two-thousand participants of a community-based Iranian population, aged 20–74 years, were investigated with a mean follow-up of 9.9 years (range: 7.6–12.2). The association between the TyG-index and CHD was investigated using multivariate Cox proportional hazard models. By selecting common components of previously validated CHD risk scores, we developed machine learning models for predicting CHD. The TyG-index was substituted for diabetes in CHD prediction models. All components of machine learning models were explained in terms of how they affect CHD prediction. CHD-predicting TyG-index cut-off points were calculated.
Results
The incidence of CHD was 14.5%. Compared to the lowest quartile of the TyG-index, the fourth quartile had a fully adjusted hazard ratio of 2.32 (confidence interval [CI] 1.16–4.68, p-trend 0.04). A TyG-index > 8.42 had the highest negative predictive value for CHD. The TyG-index-based support vector machine (SVM) performed significantly better than diabetes-based SVM for predicting CHD. The TyG-index was not only more important than diabetes in predicting CHD; it was the most important factor after age in machine learning models.
Conclusion
We recommend using the TyG-index in clinical practice and predictive models to identify individuals at risk of developing CHD and to aid in its prevention.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer