It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Though multicolour labelling methods allow the routine detection of a wide range of fluorescent (immuno)probe types in molecular cytogenetics, combined applications for the simultaneous in situ detection of proteins and nucleic acids are still sporadic in plant cell biology. A major bottleneck has been the availability of high-quality plant nuclei with a balance between preservation of 3D ultrastructure and maintaining immunoreactivity.
The aim of this study was to develop a quick and reliable procedure to prepare plant nuclei suitable for various combinations of immunolabelling and fluorescence in situ hybridisation methods (immunoFISH-GISH).
Results
The mechanical removal of the cell wall and cytoplasm, instead of enzymatic degradation, resulted in a gentle, yet effective, cell permeabilisation. Rather than manually releasing the nuclei from the fixed tissues, the procedure involves in-solution cell handling throughout the fixation and the preparation steps as ended with pipetting the pure nuclei suspension onto microscope slides. The optimisation of several critical steps is described in detail. Finally, the procedure is shown to be compatible with immunolabelling, FISH and GISH as well as their simultaneous combinations.
Conclusion
A simple plant cell nuclei preparation procedure was developed for combined immunolabelling-in situ hybridisation methods. The main and critical elements of the procedure are: a short period of fixation, incorporation of detergents to facilitate the fixation of tissues and the penetration of probes, tissue grinding to eliminate unwanted cell components, and an optimal buffer to handle nuclei. The procedure is time efficient and is easily transferable without prior expertise.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer