It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The COVID-19 pandemic has had a widespread impact on a global scale, and the evolution of considerable dominants has already taken place. Some variants contained certain key mutations located on the receptor binding domain (RBD) of spike protein, such as E484K and N501Y. It is increasingly worrying that these variants could impair the efficacy of current vaccines or therapies. Therefore, analyzing and predicting the high-risk mutations of SARS-CoV-2 spike glycoprotein is crucial to design future vaccines against the different variants. In this work, we proposed an in silico approach, immune-escaping score (IES), to predict high-risk immune-escaping hot spots on the receptor-binding domain (RBD), implemented through integrated delta binding free energy measured by computational mutagenesis of spike-antibody complexes and mutation frequency calculated from viral genome sequencing data. We identified 23 potentially immune-escaping mutations on the RBD by using IES, nine of which occurred in omicron variants (R346K, K417N, N440K, L452Q, L452R, S477N, T478K, F490S, and N501Y), despite our dataset being curated before the omicron first appeared. The highest immune-escaping score (IES = 1) was found for E484K, which agrees with recent studies stating that the mutation significantly reduced the efficacy of neutralization antibodies. Furthermore, our predicted delta binding free energy and IES show a high correlation with high-throughput deep mutational scanning data (Pearson’s r = 0.70) and experimentally measured neutralization titers data (mean Pearson’s r = −0.80). In summary, our work presents a new method to identify the potentially immune-escaping mutations on the RBD and provides valuable insights into future COVID-19 vaccine design.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Graphen Inc., New York, USA
2 Adimmune Corp., Taichung City, Taiwan