Full Text

Turn on search term navigation

© 2023 Zhong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Though the traditional fault diagnosis method of T-connected transmission lines can identify the faults inside and outside the area, it can not identify the specific branches. To improve the accuracy and reliability of fault diagnosis of T-connection transmission lines, a new method is proposed to identify specific faulty branches of T-connection transmission lines based on multi-scale traveling wave reactive power and random forest. Based on the S-transform, the mean and sum ratios of the corresponding short-time series traveling wave reactive powers of each two traveling wave protection units at multiple frequencies are calculated respectively to form the fault feature vector sample set of the T-connection transmission line. A random forest fault branch identification model is established, and it is trained and tested by the fault feature sample set of T-connection transmission line to identify the fault branch. The simulation results show that the proposed algorithm can identify the branch where the fault is located inside and outside the protection zone of T-connection transmission line quickly and accurately under various working conditions. This method also shows good performance to identify faults even under the situation of CT saturation, noise influence and data loss.

Details

Title
A new method for fault identification of T-connection transmission line based on multi-scale traveling wave reactive power and random forest
Author
Zhong, Yawen; Yang, Jie  VIAFID ORCID Logo  ; Wang, Sheng; Deng, Sijing; Hu, Liang
First page
e0284937
Section
Research Article
Publication year
2023
Publication date
Aug 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2852987521
Copyright
© 2023 Zhong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.