Abstract

With quantum computing devices increasing in scale and complexity, there is a growing need for tools that obtain precise diagnostic information about quantum operations. However, current quantum devices are only capable of short unstructured gate sequences followed by native measurements. We accept this limitation and turn it into a new paradigm for characterizing quantum gate-sets. A single experiment—random sequence estimation—solves a wealth of estimation problems, with all complexity moved to classical post-processing. We derive robust channel variants of shadow estimation with close-to-optimal performance guarantees and use these as a primitive for partial, compressive and full process tomography as well as the learning of Pauli noise. We discuss applications to the quantum gate engineering cycle, and propose novel methods for the optimization of quantum gates and diagnosing cross-talk.

In order to be practical, schemes for characterizing quantum operations should require the simplest possible gate sequences and measurements. Here, the authors show how random gate sequences and native measurements (followed by classical post-processing) are sufficient for estimating several gate set properties.

Details

Title
Shadow estimation of gate-set properties from random sequences
Author
Helsen, J. 1   VIAFID ORCID Logo  ; Ioannou, M. 2 ; Kitzinger, J. 3   VIAFID ORCID Logo  ; Onorati, E. 4   VIAFID ORCID Logo  ; Werner, A. H. 5 ; Eisert, J. 6   VIAFID ORCID Logo  ; Roth, I. 7   VIAFID ORCID Logo 

 Centrum Wiskunde & Informatica (CWI), QuSoft, Amsterdam, The Netherlands (GRID:grid.6054.7) (ISNI:0000 0004 0369 4183); University of Amsterdam, Korteweg-de Vries Institute for Mathematics, Amsterdam, The Netherlands (GRID:grid.7177.6) (ISNI:0000 0000 8499 2262) 
 Freie Universität Berlin, Dahlem Center for Complex Quantum Systems, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836) 
 Freie Universität Berlin, Dahlem Center for Complex Quantum Systems, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836); Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany (GRID:grid.7468.d) (ISNI:0000 0001 2248 7639) 
 Freie Universität Berlin, Dahlem Center for Complex Quantum Systems, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836); University College London, Department of Computer Science, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201); Technische Universität München, Fakultät für Mathematik, München, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966) 
 University of Copenhagen, Department of Mathematical Sciences, København, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X); University of Copenhagen, NBIA, Niels Bohr Institute, København, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X) 
 Freie Universität Berlin, Dahlem Center for Complex Quantum Systems, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836); Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany (GRID:grid.424048.e) (ISNI:0000 0001 1090 3682); Fraunhofer Heinrich Hertz Institute, Berlin, Germany (GRID:grid.435231.2) (ISNI:0000 0004 0495 5488) 
 Technology Innovation Institute (TII), Quantum Research Center, Abu Dhabi, UAE (GRID:grid.510500.1) (ISNI:0000 0004 8306 7226) 
Pages
5039
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2853130041
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.