Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Emerging smart devices have gathered increasing popularity within the sports community, presenting a promising avenue for enhancing athletic performance. Among these, the Rise Dynamics Alpha (RD α) smart gloves exemplify a system designed to quantify boxing techniques. The objective of this study is to expand upon the existing RD α system by integrating machine-learning models for striking technique and target object classification, subsequently validating the outcomes through empirical analysis. For the implementation, a data-acquisition experiment is conducted based on which the most common supervised ML models are trained: decision tree, random forest, support vector machine, k-nearest neighbor, naive Bayes, perceptron, multi-layer perceptron, and logistic regression. Using model optimization and significance testing, the best-performing classifier, i.e., support vector classifier (SVC), is selected. For an independent evaluation, a final experiment is conducted with participants unknown to the developed models. The accuracy results of the data-acquisition group are 93.03% (striking technique) and 98.26% (target object) and for the independent evaluation group 89.55% (striking technique) and 75.97% (target object). Therefore, it is concluded that the system based on SVC is suitable for target object and technique classification.

Details

Title
Smart Boxing Glove “RD α”: IMU Combined with Force Sensor for Highly Accurate Technique and Target Recognition Using Machine Learning
Author
Cizmic, Dea 1 ; Hoelbling, Dominik 1   VIAFID ORCID Logo  ; Baranyi, René 2   VIAFID ORCID Logo  ; Breiteneder, Roland 1 ; Grechenig, Thomas 2 

 Research Group for Industrial Software (INSO), Vienna University of Technology, 1040 Vienna, Austria 
 Research Group for Industrial Software (INSO), Vienna University of Technology, 1040 Vienna, Austria; Research Industrial Systems Engineering (RISE), 2320 Schwechat, Austria 
First page
9073
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2856790135
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.