Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The immune system provides surveillance measures to identify and remove damaged cell types at an early stage. One important example involves the NKG2D receptor, which is expressed on a range of white blood cells. In humans, NKG2D binds to a family of eight proteins known as NKG2D ligands. NKG2D ligands are generally absent from the surfaces of healthy cells. By contrast, they are induced by various forms of cell stress, most notably DNA damage, which is very common in cancer cells. By this means, NKG2D provides a rapid response system to detect and eradicate potentially dangerous cells. Expression of NKG2D ligands on cancer cells can be boosted or reduced using a range of drugs, providing opportunities for therapeutic intervention. However, the NKG2D/NKG2D ligand system is double-edged since it can also fuel chronic inflammation which, in turn, can increase cancer development and progression.

Abstract

The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.

Details

Title
The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer
Author
Tan, Ge 1 ; Spillane, Katelyn M 2 ; Maher, John 3   VIAFID ORCID Logo 

 CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; [email protected] 
 Department of Physics, King’s College, London WC2R 2LS, UK; [email protected] 
 CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK; [email protected]; Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK; Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK 
First page
1079
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2856803772
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.