Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Abstract

The construction of pronunciation dictionaries relies on high-quality and extensive training data in data-driven way. However, the manual annotation of corpus for this purpose is both costly and time consuming, especially for low-resource languages that lack sufficient data and resources. A multilingual pronunciation dictionary includes some common phonemes or phonetic units, which means that these phonemes or units have similarities in the pronunciation of different languages and can be used in the construction process of pronunciation dictionaries for low-resource languages. By using a multilingual pronunciation dictionary, knowledge can be shared among different languages, thus improving the quality and accuracy of pronunciation dictionaries for low-resource languages. In this paper, we propose using shared articulatory features among multiple languages to construct a universal phoneme set, which is then used to label words for multiple languages. To achieve this, we first developed a grapheme−phoneme (G2P) model based on an encoder−decoder deep neural network. We then adopted a near-optimal active learning method in the process of building the pronunciation dictionary to select informative samples from a large, unlabeled corpus and had them labeled by experts. Our experiments demonstrate that this method selected about 1/5 of the unlabeled data and achieved an even higher conversion accuracy than the results of the large data training method. By selectively labeling samples with a high uncertainty in the model, while avoiding labeling samples that were accurately predicted by the current model, our method greatly enhances the efficiency of pronunciation dictionary construction.

Details

Title
Near-Optimal Active Learning for Multilingual Grapheme-to-Phoneme Conversion
Author
Cao, Dezhi 1 ; Zhao, Yue 2   VIAFID ORCID Logo  ; Wu, Licheng 3   VIAFID ORCID Logo 

 School of Chinese Ethnic Languages and Literature, Minzu University of China, Beijing 100081, China; [email protected]; Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China 
 Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China; School of Information Engineering, Minzu University of China, Beijing 100081, China; [email protected] 
 School of Information Engineering, Minzu University of China, Beijing 100081, China; [email protected] 
First page
9408
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2856814023
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.