Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Antarctic atmosphere is rapidly changing, but there are few observations available in the interior of the continent to quantify this change due to few ground stations and satellite measurements. The Concordia station is located on the East Antarctic Plateau (75° S, 123° E, 3233 m above mean sea level), one of the driest and coldest places on Earth. Several remote sensing instruments are available at the station to probe the atmosphere, together with operational meteorological sensors. In order to observe in situ clouds, temperature, relative humidity and supercooled liquid water (SLW) at a high vertical resolution, a new project based on the use of an unmanned aerial vehicle (drone) vertical take-off and landing from the DeltaQuad Company has been set up at Concordia. A standard Vaisala pressure, temperature and relative humidity sensor was installed aboard the drone coupled to an Anasphere SLW sensor. A total of thirteen flights were conducted from 24 December 2022 to 17 January 2023: nine technology flights and four science flights (on 2, 10, 11 and 13 January 2023). Drone-based temperature and relative humidity profiles were compared to (1) the balloon-borne meteorological observations at 12:00 UTC, (2) the ground-based microwave radiometer HAMSTRAD and (3) the outputs from the numerical weather prediction models ARPEGE and AROME. No SLW clouds were present during the period of observations. Despite technical issues with drone operation due to the harsh environments encountered (altitude, temperature and geomagnetic field), the drone-based observations were consistent with the balloon-borne observations of temperature and relative humidity. The radiometer showed a systematic negative bias in temperature of 2 °C, and the two models were, in the lowermost troposphere, systematically warmer (by 2–4 °C) and moister (by 10–30%) than the drone-based observations. Our study shows the great potential of a drone to probe the Antarctic atmosphere in situ at very high vertical resolution (a few meters).

Details

Title
In Situ VTOL Drone-Borne Observations of Temperature and Relative Humidity over Dome C, Antarctica
Author
Ricaud, Philippe 1   VIAFID ORCID Logo  ; Medina, Patrice 2 ; Durand, Pierre 2   VIAFID ORCID Logo  ; Attié, Jean-Luc 2 ; Bazile, Eric 1 ; Grigioni, Paolo 3   VIAFID ORCID Logo  ; Massimo Del Guasta 4 ; Pauly, Benji 5 

 Centre National de Recherches Météorologiques (CNRM), Université de Toulouse, Météo-France, Centre National de le Recherche Scientifique (CNRS), 31057 Toulouse, France; [email protected] 
 Laboratoire d’Aérologie, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, 31400 Toulouse, France; [email protected] (P.M.); [email protected] (P.D.); [email protected] (J.-L.A.) 
 Agenzia Nazionale per le Nuove Tecnologie, l’energia e lo Sviluppo Economico Sostenibile (ENEA), 00196 Roma, Italy; [email protected] 
 Istituto Nazionale di Ottica-Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy; [email protected] 
 DeltaQuad, 1115 AD Duivendrecht, The Netherlands; [email protected] 
First page
532
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2856994277
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.