Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The knowledge of signal demodulation processes using superheterodyne receivers is of great importance in the field of telecommunications. Superheterodyne receivers receive the current focus of many scientists in a wide variety of applications. This topic is part of the syllabus of the Communication Theory course at the School of Telecommunications of the Polytechnic University of Cartagena, Spain. The authors found that the academic performance of the students had not been entirely satisfactory in recent years. This situation was aggravated during the COVID-19 lockdown. Students had to reinforce their knowledge independently at home, despite the support provided by teachers. To the best of the authors’ knowledge, there is a noticeable lack of educational tools in this area; of those that are available, they exhibit a mismatch with the specific needs of this subject. This manuscript shows how the design of the educational software tool DOSHER, tailored to enhance the understanding of superheterodyne receivers, successfully alleviated the aforementioned drawbacks. DOSHER was designed, developed, and applied during the 2020–2021 academic year (during the COVID-19 lockdown). The results show that students were not only very satisfied with its use, but they also improved their marks. Analysis of students’ academic performance in the year of DOSHER implementation showed an average improvement in their marks of between 9–12% compared with previous years. In 2021–2022, when DOSHER was fully operational from the start, the improvement in terms of pass rate (31%) at the first mid-term was significant compared to previous years (<20%).

Details

Title
Improving the Learning of Superheterodyne Demodulation of Frequency-Division Multiplexing Signals via the Educational Software Tool DOSHER
Author
Pardo-Quiles, Domingo 1   VIAFID ORCID Logo  ; Rodríguez, José-Víctor 1   VIAFID ORCID Logo  ; Juan-Llácer, Leandro 1   VIAFID ORCID Logo  ; Morales-Sánchez, Juan 1   VIAFID ORCID Logo  ; Rodríguez-Rodríguez, Ignacio 2   VIAFID ORCID Logo 

 Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Antiguo Cuartel de Antigones, Plaza del Hospital, 1, 30202 Cartagena, Spain; [email protected] (D.P.-Q.); [email protected] (L.J.-L.); [email protected] (J.M.-S.) 
 Departamento de Ingeniería de Comunicaciones, Universidad de Málaga, Avda. Cervantes, 2, 29071 Málaga, Spain; [email protected] 
First page
3381
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857007746
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.