Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A micro-energy harvesting device proposed in the literature was numerically studied. It consists of two bluff bodies in a micro-channel and a flexible diaphragm at its upper wall. Vortex shedding behind bodies induces pressure fluctuation causing vibration of the diaphragm that converts mechanical energy to electrical by means of a piezoelectric membrane. Research on enhancing vortex shedding was justified due to the low power output of the device. The amplitude and frequency of the unsteady pressure fluctuation on the diaphragm were numerically predicted. The vortex shedding severity was mainly assessed in terms of pressure amplitude. The CFD model set-up was described in detail, and appropriate metrics to assess the energy harvesting potential were defined. Several 2D cases were simulated to study the effect of the inlet Reynolds number and channel blockage ratio on the prospective performance of the device. Furthermore, the critical blockage ratio leading to the vortex shedding suppression was sought. A higher inlet velocity for a constant blockage ratio was found to enhance vortex shedding and the pressure drop. Great blockage ratio values but lower than the critical ones seemed to provide great pressure amplitudes at the expense of a moderate pressure drop. There is evidence that the field is fruitful for further research and relevant directions were provided.

Details

Title
Numerical Assessment of Flow Energy Harvesting Potential in a Micro-Channel
Author
Koubogiannis, Dimitrios G  VIAFID ORCID Logo  ; Marios Vasileios N Benetatos
First page
222
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857041815
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.