1. Introduction
The proteins UshA and CpdB are prototypic nucleotidases of the periplasmic space of Escherichia coli [1,2] and other Gram-negative bacteria [3,4,5,6,7,8,9,10]. As far as enzyme activity is concerned, UshA is a highly efficient 5′-nucleotidase that is also active as a phosphoanhydride hydrolase of UDP-sugars, CDP-alcohols, and other nucleotidic derivatives [11,12,13]. CpdB is a highly efficient 3′-nucleotidase, also active as a phosphodiesterase of 2′,3′-cyclic mononucleotides, 3′,5′-cyclic or linear dinucleotides, and the artificial phosphodiester substrate bis-4-nitrophenylphosphate [14,15]. Both proteins are structurally related, as following the removable signal peptide for secretion (SP), they display the same two-domain architecture: an N-terminal metallophos domain (Pfam ID PF00149) that includes the catalytic site with a dimetal center, and a C-terminal 5_nucleotid_C domain (Pfam ID PF02872) that includes a substrate-binding site [16,17]. It is noteworthy that the designation of the 5_nucleotid_C domain does not imply the occurrence of 5′-nucleotidase activity. UshA is a 5′-nucleotidase devoid of 3′-nucleotidase activity, while CpdB is a 3′-nucleotidase devoid of 5′-nucleotidase activity. In both proteins, the N- and C-terminal domains are joined by a ≈20-amino acid linker [17,18]. Both enzymes are believed to share a remarkable catalytic cycle in which the typical 5′-AMP or 3′-AMP substrates bind to the specificity site in the 5_nucleotid_C domain, with the adenine ring forming a stacking sandwich between two aromatic residues. The substrate-charged domains then undergo large, 96° rotations that bring the substrate to the catalytic site in the metallophos domains, where dephosphorylation takes place [17,19,20].
Besides the periplasmic versions of UshA and CpdB, UshA-like and CpdB-like proteins occur in Gram-positive bacteria as cell wall-bound proteins that have received different names. Among them are ecto-5′-nucleotidases of Staphylococcus aureus (AdsA [21]), Streptococcus sanguinis (Nt5e [22]), S. agalactiae (NudP [23]), S. pyogenes (S5nA [24]), and S. suis (Ssads [25]), and ecto-3′-nucleotidases of S. agalactiae (CdnP [26]) and S. suis (SntA [27,28]). These proteins, in addition to the SP, metallophos, and 5_nucleotid_C domains typical of UshA and CpdB, bear 3′ extensions that constitute cell wall binding domains with a LPXTG or similar motif [29].
The periplasmic or cell wall locations of these enzymes make them able to act on non-cytoplasmic substrates, either secreted from the same cell or of exogenous origin, for instance, in the cytoplasm of eukaryotic cells invaded by bacterial pathogens such as Salmonella enterica or S. agalactiae. Both 5′-nucleotidases and 3′-nucleotidases have been identified and considered virulence factors for producing pathogens by mechanisms related to their nucleotide-degrading activities or to effects on complement that facilitate evasion from host innate immunity [21,22,23,24,25,26,27,30,31].
For these reasons, we consider it of utmost interest to gain knowledge of how widespread, among the genomes of different bacterial taxa, the occurrence of genes coding for nucleotidases is, which, either by being periplasmic or bound to the cell wall, have the potential to act extracytoplasmatically on nucleotidic substrates. In a recent study, we analyzed the genomic distribution of cpdB-like genes using the protein sequence of S. enterica CpdB as a probe (query) for TBlastN analyses of complete genomes, limited by bacterial taxa at different levels, from phyla to species [32]. The results revealed that cpdB-like genes are far from ubiquitous in the superkingdom Bacteria, being present in some phyla but not in others. At levels higher than species, the genomic distribution was not homogeneous since few taxa contained a cpdB-like gene in all the sequenced genomes. At the level of species, the distribution was more homogeneous, as out of 77 taxa considered, 38 showed a (near) widespread distribution of cpdB-like genes and 28 did not contain them. Interestingly, 11 species showed a partial distribution, with some sequenced genomes but not all containing a cpdB-like gene. This interesting panoramic view prompted us to extend the analysis to ushA-like genes and to perform it in a more detailed way by increasing the number of TBlastN probes from the single one used in the previous study [32] to a total of seven different probes in the current manuscript, five for usha-like genes and two for cpdB-like ones. The result is an extensive catalog of the genomic distribution of these genes at different levels, from phylum to species, constituting a starting point for research using other in silico or experimental approaches. Major observations were that the genomic distribution of ushA-like genes was not homogeneous and that the correlation with cpdB-like genes was partial, as in some taxa both were present or absent; however, in others only one was present. Other interesting outcomes worth further research by other approaches are pointed out.
2. Materials and Methods
TBlastN analyses [33,34] were run against NCBI complete microbial genomes (
3. Results
3.1. Selection of Probes for TBlastN Analysis
The probes for TBlastN analysis of UshA-like genes were selected among a set of 21 bacterial 5′-nucleotidases (Table 1). Eighteen of them were collected from a recent review by Zakataeva [37], to which two well-characterized CpdB-like 3′-nucleotidases were added [14,27] (no. 20 and 21 in Table 1). All of them are either periplasmic or cell wall-bound, experimentally studied nucleotidases. In addition, one uncharacterized, putative 5′-nucleotidase of B. subtilis, recovered from UniProtKB/Swiss-Prot (
Periplasmic or cell wall-bound bacterial nucleotidases are used to select probes for TBlastN analysis of bacterial genomes. This protein set was taken from Zakataeva [37], except no. 19 (taken from UniProtKB/Swiss-Prot [38]) and no. 20 and 21 from [14,27].
No. | Accession | Description | Amino Acids |
---|---|---|---|
1 1 | P07024 | USHA_ECOLI [Escherichia coli] | 550 |
2 | Q9KQ30 | 5′-nucleotidase [Vibrio cholerae] | 553 |
3 | WP_005182369 | UDP-sugar hydrolase/5′-nucleotidase UshA [Yersinia intermedia] | 550 |
4 | Q8EFH1 | 5′-nucleotidase [Shewanella oneidensis] | 569 |
5 | AAF12718 | UDP-sugar hydrolase precursor [Klebsiella aerogenes] | 550 |
6 | P44569 | NAD 5′-nucleotidase [Haemophilus influenzae] | 603 |
7 | WP_061821283 | LPXTG-anchored adenosine synthase AdsA [Staphylococcus aureus] | 772 |
8 | WP_011837008 | Cell surface ecto-5′-nucleotidase Nt5e [Streptococcus sanguinis] | 719 |
9 | WP_000726911 | Bifunctional metallophosphatase/5′-nucleotidase [Streptococcus agalactiae] | 690 |
10 | AEJ25391 | Surface-anchored 5′-nucleotidase [Streptococcus equi] | 668 |
11 | Q9A0A2 | Putative secreted 5′-nucleotidase (5′-nucleotidase) [Streptococcus pyogenes] | 670 |
12 | CAR45827 | Putative 5′-nucleotidase [Streptococcus suis P1/7] | 721 |
13 | WP_003099850 | 5′-Nucleotidase C-terminal domain-containing protein [Streptococcus iniae] | 676 |
14 | Q6HTQ7 | 2′,3′-Cyclic-nucleotide 2′-phosphodiesterase [Bacillus anthracis] | 780 |
15 | P22848 | 5′-Nucleotidase (Vibrio parahaemolyticus) | 560 |
16 | WP_102505627 | UDP-sugar hydrolase/5′-nucleotidase UshA [Salinivibrio costicola) | 557 |
17 | WP_041419915 | UDP-sugar hydrolase/5′-nucleotidase UshA [Shewanella violacea] | 569 |
18 | WP_011760134 | UDP-sugar hydrolase/5′-nucleotidase UshA [Shewanella amazonensis] | 571 |
19 | O32133 | Uncharacterized metallophosphoesterase YunD [Bacillus subtilis] | 462 |
20 | P08331 | 2′,3′-Cyclic-nucleotide 2′-phosphodiesterase/3′-nucleotidase [Escherichia coli] | 647 |
21 | AYV64543 | Heme-binding protein SntA [Streptococcus suis] | 813 |
1 The probes selected for the study are shown in the background color as Figure 1 to facilitate cross-referencing.
The mutual relatedness among Table 1 proteins was evaluated by the scores of BlastP alignments (Figure 1). This allowed us to select seven proteins to be used as TBlastN probes; they are identified as proteins 1, 6, 8, 9, 19, 20, and 21 in Table 1 and Figure 1. According to the color code used in Figure 1, five of the selected probes (no. 1, 8, 9, 20, and 21) were highly related to a small group of nucleotidases, whereas the other two probes (no. 6 and 19) showed insignificant alignment scores with any other member of the set. Incidentally, one of the so-called 5′-nucleotidases (no. 14 in Table 1) was actually a CpdB-like protein, to judge from its strong relatedness to authentic CpdB-like enzymes (no. 20 and 21 in Table 1) and insignificant alignment scores to the other Table 1 proteins.
3.2. TBlastN Analysis of Bacterial Genomes
3.2.1. General Strategy for the Analysis and Presentation of Results
TBlastN searches were run between 30 June and 15 July 2023 as described under the Materials and Methods section. The number of hits obtained with each probe for each taxonomical group analyzed was recorded. A global TBlastN search was run on 30 June 2023, in the superkingdom Bacteria (taxid:2), with 4185 type-material genomes and a total of 40,608 genomes available on that date. Table 2 shows the results obtained with the seven probes, computing only hits found among type-material genomes.
Thereafter, searches were run in the Bacteria taxa of the NCBI Taxonomy browser [36] at different levels. Detailed results are shown in Tables S1–S6. Summaries of the results at different levels are shown in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8, where the presence or absence of ushA-like and cpdB-like genes is schematically indicated. In these summaries, “presence” does not mean that the genes are widespread in the taxon. In this concern, three levels are distinguished: ≤50%, >50% but <100%, and 100% of the analyzed genomes contain ushA-like and/or cpdB-like genes (hits). This is marked by the letters U (ushA-like) and C (cpdB-like) on different color backgrounds: green (≤50%), orange (>50% but <100%), and red (100%). It must be remarked that these percentages include hits obtained with any of the UshA-like or CpdB-like probes (see Table 2). For ushA-like genes, the results were strongly dependent on the probe (five different ones are used), whereas for cpdB-like genes, the two probes used gave similar results in most but not all the taxonomical groups. Finally, when “presence” of both types of genes is indicated for the same taxon, it does not necessarily mean they are in the same genome, unless 100% of the genomes gave positive results in both cases. Of course, 100% positivity for one gene type and <100% for the other means that some genomes contain both types of genes. On the other hand, logically, “absence” refers to 100% of the analyzed genomes with any probe.
In summary, when a taxonomical level is negative or 100% positive for both genes, or negative for one and 100% positive for the other gene type, the analysis of such a taxon is deemed complete and is not pursued further at lower taxonomical levels.
3.2.2. Genomic Distribution of ushA-like and cpdB-like Genes in Bacteria Phyla
Forty three phyla, including the Delta/epsilon subdivision, found in the NCBI Taxonomy browser within the superkingdom Bacteria (mostly coincident with [39]), were submitted to TBlastN analyses with UshA-like and CpdB-like probes (Table 2). The detailed results are shown in Table S1. A simpler summary of the presence/absence of ushA-like and cpdB-like genes is shown in Table 3.
Twelve phyla contained both types of genes; 14 showed neither; 11 showed ushA-like but not cpdB-like genes; and in six cases, the converse was true. With the criteria of Section 3.2.1, 19 phyla (those in black type in Table 3) were considered complete and not pursued at lower levels. The 24 phyla in red type are further analyzed in Table 4 and Table S2.
3.2.3. Genomic Distribution of ushA-like and cpdB-like Genes in Bacterial Classes of Selected Phyla
To continue the TBlastN exploration, 76 bacterial classes belonging to 24 different phyla were queried with the seven probes (Table 2). The detailed results are shown in Table S2. In six of those classes, there was no sequenced genome. A simpler summary of the presence/absence of ushA-like and cpdB-like genes in the 70 classes for which there were sequenced genome(s) is shown in Table 4. With the criteria defined in Section 3.2.1, the analyses of 31 classes (those in black type in Table 4) were considered complete and not pursued further at lower taxonomical levels. On the other hand, the 39 classes shown in red type in Table 4 were further analyzed (Table 5 and Table S3), with one exception marked with an asterisk.
3.2.4. Genomic Distribution of ushA-like and cpdB-like Genes in Bacterial Orders of Selected Classes
To continue the TBlastN exploration, 152 bacterial orders belonging to 38 different classes were queried with the seven probes (Table 2). The detailed results are shown in Table S3. In 20 of those classes, there was no sequenced genome. A simpler summary of the presence/absence of ushA-like and cpdB-like genes in the 132 classes for which there were sequenced genome(s) is shown in Table 5. With the criteria defined in Section 3.2.1, the analyses of 53 orders (those in black type in Table 5) were considered complete and not pursued further at lower taxonomical levels. On the other hand, the 79 orders shown in red type in Table 5 were further analyzed (Table 6 and Table S4).
3.2.5. Genomic Distribution of ushA-like and cpdB-like Genes in Bacterial Families of Selected Orders
To continue the TBlastN exploration, 403 bacterial families belonging to 79 different orders were queried with the seven probes (Table 2). The detailed results are shown in Table S4. In 99 of those families, there was no sequenced genome. A simpler summary of the presence/absence of ushA-like and cpdB-like genes in the 304 families for which there were sequenced genome(s) is shown in Table 6. With the criteria defined in Section 3.2.1, the analyses of 139 families (those in black type in Table 6) were considered complete and not pursued further at lower levels. On the other hand, the 165 families shown in red type in Table 6 were further analyzed (Table 7 and Table S5).
3.2.6. Genomic Distribution of ushA-like and cpdB-like Genes in Bacterial Genera of Selected Families
To continue the TBlastN exploration, 510 bacterial genera belonging to 165 different families were queried with the seven probes (Table 2). In contrast to previous steps (Section 3.2.3, Section 3.2.4 and Section 3.2.5), TBlastN analyses were not run for all the genera belonging to the families deemed not complete (those highlighted in red type in Table 6). Instead, while doing the TBlastN analyses of families, the genera giving the hits were annotated, thus avoiding running later lots of TBlastN searches that would not give any hits.
The detailed results obtained with the 510 selected genera are shown in Table S5. For all of them, the NCBI Complete Genomes Database contained at least one sequenced genome. A simpler summary of the presence/absence of ushA-like and cpdB-like genes in those genera is shown in Table 7.
With the criteria defined in Section 3.2.1, the analyses of 268 genera (those in black type in Table 7) were considered complete. Anyhow, for analyses at the level of species (Table 8 and Table S6), also at variance with previous steps, the selection was not based on the non-complete character of the genera. Instead, the selection was purely subjective and included species belonging to genera not mentioned in Table 7, as explained in Section 3.2.7.
3.2.7. Genomic Distribution of ushA-like and cpdB-like Genes in Selected Bacterial Species
To continue the TBlastN exploration, 107 bacterial species belonging to different families were queried with the seven probes (Table 2). In contrast to the strategy followed at the previous taxonomical levels, when systematic criteria were applied for taxa selection (Section 3.2.3, Section 3.2.4, Section 3.2.5 and Section 3.2.6), a subjective selection of species was made in this case. It included all the bacterial species analyzed in the earlier study of cpdB-like genes, which had been selected mainly for their pathogenicity [32]. In summary, 107 different species were queried with the seven probes. Of them, the 80 shown in black type were declared complete by the criteria described in Section 3.2.1. Non-complete species are highlighted in red. Detailed results are in Table S6, and a summary is in Table 8.
4. Discussion
4.1. Overview
This study is a follow-up of a previous analysis of the genomic distribution of cpdB-like genes in Bacteria, which was performed with S. enterica CpdB (GenBank accession P26265) as the probe [32]. That study was mainly centered on the phyla Pseudomonadota and Bacillota (named then more traditionally as Proteobacteria and Firmicutes, respectively) and their lower divisions. In the current manuscript, the former study has been extended in several aspects, mainly that besides cpdB-like genes, ushA-like genes have been analyzed, and the searches were run without a priori restriction to particular taxa. Moreover, several probes were used, two for cpdB-like genes and five for ushA-like genes (Table 2). The use of several UshA-like probes revealed different types of ushA-like genes, some of them specifically associated with different bacterial taxa. The result is an extensive catalog of the distribution of these genes in superkingdom Bacteria. Several resources are provided, including Supplementary Tables S1–S6 that contain the detailed results of the analyses at different levels: phylum (Table S1), class (Table S2), order (Table S3), family (Table S4), genus (Table S5), and species (Table S6). In the main manuscript, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 contain summaries of the data at different levels, from phylum to species.
Table 9 summarizes the total numbers of taxa studied, including the counts of probed taxa of different levels, analyzed taxa (once discounted those for which, by the time of submission, upon TBlastN, no sequenced genomes were found in the NCBI Complete Genomes Database), and taxa declared complete according to the criteria explained in Section 3.2.1. For complete taxa, Table 9 also shows the breakdown by kind of results, depending on whether UshA-like and/or CpdB-like probes gave hits or not. To facilitate searching for particular taxa, alphabetical lists are provided of the 1291 taxa probed (Table S7) and of the 125 taxa without sequenced genomes in the NCBI Complete Genomes Database among those that were probed (Table S8).
4.2. About the Possible Correlation between ushA-like and cpdB-like Genes
UshA and CpdB have different specificities. UshA is a 5′-nucleotidase, UDP-sugar hydrolase, and CDP-alcohol hydrolase [11,12], and CpdB acts as a 3′-nucleotidase and as a phosphodiesterase of 2′,3′-cyclic nucleotides and 3′,5′-linear and cyclic dinucleotides [14]. They are periplasmic [1,2] or cell-wall [21,22,23,24,25,26,27] enzymes that act on extracellular substrates, either exogenous or endogenous. In addition, both are provirulent factors for the producing pathogens, facilitating escape from the innate immunity of the host [21,22,23,24,25,26,27]. The similitude between them was the main reason to study and compare their genomic distributions in Bacteria, with the aim of establishing the extent to which the occurrence of one correlates with the occurrence of the other. In this regard, it is worth recalling that, for instance, the action of CpdB-like proteins on linear and cyclic dinucleotides yields 5′-nucleotides as products but cannot continue their degradation to nucleosides [32]. To this end, the metabolic action of CpdB-like enzymes can be continued by UshA-like enzymes. Moreover, pointing to the correlation between both enzymes is the occurrence in some bacteria of natural fusions of UshA and CpdB as the result of two-gene fusion [40,41].
Table 10, Table 11, Table 12 and Table 13 summarize the non-homogeneous distribution of both gene kinds and the (lack of) correlation between them. A qualitative correlation was observed between both gene kinds for some taxa but not for others. In 416 out of 590 taxa (70.5%), they were both either present (31.4%; Table 10) or absent (39.1%; Table 11). However, 174 taxa (29.5%) failed to show such a correlation, as one of the gene types was present but not the other: 21.7% of the taxa bear ushA-like, not cpdB-like genes (Table 12), whereas for 7.8% the converse was true (Table 13).
4.3. Comments on Some Specific Stories
4.3.1. About Phylum Bacillota and Class Bacilli: Specificity of Probe O32133
A phylum worth special attention is Bacillota, as half of the sequenced type-material genomes (366/705) gave hits with probe O32133, which gave no hits in other phyla except four hits found when the limit to type material was removed for the TBlastN. In Bacillota, there were many hits with all the UshA-like and CpdB-like probes (Table S1). In Table 14, Bacillota is compared with the rest of the superkingdom Bacteria.
In Table 15, a similar comparison is made between the class Bacilli and the rest of the phylum Bacillota. In every case, the distribution of hits among the sequenced genomes was partial, i.e., there were genomes with ushA-like and cpdB-like genes and genomes without them. The degree of coincidence cannot be easily ascertained at this level. This must be attempted at lower taxonomical levels.
4.3.2. About the Occurrence of ushA-like and cpdB-like Genes in the Numerous Sequenced Genomes of Escherichia coli, Salmonella enterica, Pasteurella multocida, Klebsiella pneumoniae and Vibrio cholerae
The five species to be discussed in this section have in common that for them there are numerous genomes available in the NCBI Complete Genomes Database and that the TBlastN analyses did not give complete results for any of the two kinds of genes according to the criteria described in Section 3.2.1.
When complete results are obtained at least for one gene kind, e.g., ushA-like genes, the full picture can be inferred: there will be a number of genomes with both kinds present, and the remaining, up to the total number of genomes, will display only the ushA kind, or vice versa. This is the case for several of the species analyzed in Table 8 (with more details in Table S6). For instance, for Staphylococcus saprophyticus, there are 17 genomes available in the database; all of them gave a ushA-like hit, whereas only four gave a cpdB-like one (Table S6, line 92). It can be concluded that four genomes contain both gene kinds, and the remaining 13 contain only an ushA-like one.
In the cases to be discussed below, there were many hits with UshA-like and CpdB-like probes; however, since TBlastN did not give complete results in any case, for some genomes, it was unclear whether both kinds of genes were absent or one was present and the other absent.
The most important part of the structural and functional information of UshA and CpdB nucleotidases and their encoding genes has been obtained in E. coli [1,2,11,12,14,16,17,18,19]. For this species, a large number of genomes are available in the Complete Genomes Database (3565 when this manuscript was submitted). Most of them; however, not all contain both ushA-like and cpdB-like genes. According to data in line 35 of Table S6, there are 20 E. coli genomes that do not contain an ushA-like gene and 10 genomes that do not contain a cpdB-like gene. By downloading the TBlastN results obtained for E. coli with probes P07024 (UshA protein) and P08331 (CpdB protein), it was confirmed that the same 3559 E. coli genomes had been hit in both cases. Based on their alignment scores, it was possible to identify four genomes that contain an ushA-like gene but are devoid of a cpdB-like gene and 14 genomes for which the converse is true (Table 16). These exceptions were found in 10 different E. coli strains. In addition, there may be six non-identified genomes that contain neither ushA-like nor cpdB-like genes. These data confirm that, although E. coli is a major contributor to the occurrence of these genes in Bacteria, their distribution is near but not fully homogeneous, and there is a high but not full correlation between them.
A particular aspect of some E. coli genomes worthy of attention refers to those of the avian pathogenic E. coli (APEC) strains, for which the cpdB gene has been shown to be provirulent [30]. In the complete genome database, there are five APEC genomes, all of them containing ushA and cpdB genes with high scores (Table 17).
In contrast to what was found in E. coli, a similar analysis with S. enterica genomes led to different results. Table S6 (lines 79–80) shows data for two well-known variants of S. enterica subspecies enterica, serovars Typhi and Typhimurium. In the first case, the 125 genomes available for serovar Typhi gave all high-score hits with probes P07024 (UshA protein) and P08331 (CpdB protein). However, the 350 genomes available for serovar Typhimurium gave hits in only 219 cases with both probes. Downloading and inspection of TBlastN results indicated that all these genomes contained both ushA-like and cpdB-like genes, whereas the remaining 131 genomes of Salmonella Typhimurium deposited in the NCBI Complete Genomes Database contain none of them. In this case, no genome was identified containing one of the gene types but not the other. Therefore, the distribution of these genes in Salmonella Typhimurium is clearly not homogeneous; however, there is a good correlation between them.
In the case of P. multocida, 138 genomes were available in the database, of which 135 gave ushA-like hits and 137 gave cpdB-like ones (line 66 of Table S6). By downloading the TBlastN results obtained for this species with probes P07024 (UshA protein) and P08331 (CpdB protein), it was possible to identify one genome that, despite containing a high-score ushA-like gene, was devoid of a cpdB-like gene, and four genomes that, despite showing high-score cpdB-like genes, were devoid of ushA-like ones (or in one case, just a borderline hit) (Table 18). In this case, such as in E. coli, the distributions of both genes are near but not fully homogeneous, and there is a high but not full correlation between them.
K. pneumoniae is another species for which a large number of genomes are available in the Complete Genomes Database (1967, when this manuscript was submitted). Most of them; however, not all, contain both ushA-like and cpdB-like genes. According to data in line 44 of Table S6, five K. pneumoniae genomes do not contain an ushA-like gene, and five do not contain a cpdB-like gene. To find out whether they are the same or not, TBlastN results obtained with probes P07024 (UshA protein) and P08331 (CpdB protein) were downloaded and compared in Excel. This comparison indicated that the 1962 hits found with each probe were the same; therefore, it seems that there are five double-negative K. pneumoniae genomes, i.e., without both ushA-like and cpdB-like genes. So, the distribution of these genes in K. pneumoniae was near but not fully homogeneous, with a full correlation between them.
In the case of V. cholerae, 221 genomes were available in the database, of which 112 gave ushA-like and cpdB-like hits (line 106 of Table S6). By downloading the TBlastN results obtained for this species with probes P07024 (UshA protein) and P08331 (CpdB protein), it was confirmed that the 112 genomes found by the two probes were the same. Therefore, there are no genomes containing only one of the gene types. All the V. cholerae genomes are either double positive or double negative for these genes. Such as in the case of Salmonella Typhimurium (see above), the distribution of the genes is clearly not homogeneous; however, with full correlation between both kinds.
4.3.3. About the Variety of Distributions of ushA-like and cpdB-like Genes in Species of Streptococcus
The genus Streptococcus is interesting because different species showed different typologies concerning the distribution of ushA-like and cpdB-like genes (see Table 8 and details in lines 95–104 of Table S6). This includes: complete double positive (S. sanguinis and S. termophilus, although probes giving complete ushA positives were different); complete double negative (S. mitis and S. pneumoniae); complete positive for ushA and negative for cpdB (S. mutans and S. pyogenes, although the positives were obtained with different probes); complete positive for ushA and partial for cpdB (S. parasuis); partial positive for ushA and complete positive for cpdB (S. agalactiae); near complete but not fully positive for both genes (S. suis); near complete but not fully positive for ushA and partial for cpdB (S. dysgalactiae). Within Streptococcus species, there is both an irregular distribution and an irregular correlation between ushA-like and cpdB-like genes.
4.4. Repercussion of the Results
In the earlier study of the genomic distribution of cpdB-like genes [32], the possible repercussions of the different kinds of distribution found (widespread, partial, negative) were analyzed, taking into account the role of CpdB-like proteins in the virulence of pathogens, a feature that is shown both by CpdB-like and UshA-like proteins [21,22,23,24,25,26,27]. Therefore, the same analysis can be applied to the results of the current manuscript. This is summarized in three conclusions (adapted from [32]).
Species that do not contain ushA-like and/or cpdB-like genes cannot explode the UshA-like or CpdB-like protein-dependent strategies that facilitate innate immunity escape.
Species in which ushA-like and/or cpdB-like genes are widespread constitute a field to explore the possible role of genes in virulence by creating gene mutants and studying the enzyme activity and specificity of the proteins.
In species with a partial distribution of ushA-like and/or cpdB-like genes, their presence or absence could modulate the virulence of pathogen strains or isolates.
4.5. Strength and Limitations of this Study
The major strength of this study is that it constitutes an extensive catalog of the genomic distribution in Bacteria of two genes with related enzymatic function (but different specificities), structure, and role in virulence. Moreover, interesting is that the TBlastN results are analyzed in terms of alignment scores, which are a constant independent of database size.
On the other hand, the following limitations should be considered:
First, the classification of bacterial taxa is eventually subject to alterations, and, in fact, it has been so since the publication of our earlier study [32].
Second, the results obtained for each taxon are not necessarily stable over time. New bacterial genomes are being sequenced and added to the NCBI Complete Genomes Database or, eventually, retired. In some cases, this was observed to occur to a minor extent in the course of data collection. This can affect the results in a significant way for those taxa with few genomes deposited in the database.
Third, to interpret the results of TBlastN searches in terms of the presence of ushA-like and cpdB-like genes, a minimum alignment score of 151 and a minimum query coverage of 71% were established. This reduces the number of false positives but, in turn, can disregard true but distant homologs. This may have occurred, for instance, with the results of probe WP_011837008, as with some frequency it gave significant scores but with coverages somewhat below 71%.
Fourth, TBlastN hits, even with high scores, reveal the presence of the corresponding genes but do not warrant that they are expressed or that the proteins encoded are enzymatically active. In fact, for instance, silent alleles of ushA have been reported in S. enterica and E. coli [42,43,44,45].
Finally, in such a large collection of data, mistakes are expected. Therefore, in the case of special interest in any concrete result, the readers should be wise to check it by running themselves the relevant TBlastN searches.
5. General Summary of Conclusions and Outcomes Worth of Further Investigation
-
An extensive catalog of the distribution of ushA-like and cpdB-like genes in the genomes of bacterial taxa was constructed by TBlastN analyses of genomes, from phylum to species, run between 30 June and 15 July 2023, with seven different probes, five for ushA-like and two for cpdB-like genes. In total, the genomes of 43 phyla, 76 classes, 152 orders, 403 families, 510 genera, and 107 species were analyzed. This encompasses every bacterial taxon, since a taxon (class, order, family, or genus) was omitted from analysis only when the genomic analysis of the immediately higher taxonomical level was deemed complete (100% genomes positive and/or negative for both gene kinds).
-
The genomic distributions of both gene kinds are not homogeneous, as while significant homologs occur in many taxa, in many others they do not. For instance, considering only taxa declared complete, 359 contained one or both ushA-like and cpdB-like genes (Table 10, Table 12, and Table 13), and 231 contained none of them (Table 11).
-
The correlation between both gene kinds is partial, as among complete taxa there were 416 taxa in which both occurred or both were absent (Table 10 and Table 11), while 128 taxa contained only ushA-like genes (Table 12), and 46 taxa contained only cpdB-like genes (Table 13).
-
One of the probes used for ushA-like genes (accession number O32133) revealed the highly frequent occurrence in class Bacilli genomes (358/425) of homologs of an uncharacterized B. subtilis metallophosphoesterase named YUND_BACSU. This protein is widespread in B. subtilis genomes (331/346) and has good homologs in 100% of the genomes of B. anthracis and B. cereus. These uncharacterized proteins are therefore interesting candidates for cloning, expression, and enzyme characterization. Eventually, they could also be tested for effects on virulence.
-
The five complete genomes available for avian pathogenic E. coli (APEC; Table 17) contain high-score hits of ushA (probe accession number P070724) and cpdB genes (probe accession number P08331). The cpdB gene of APEC has been shown previously to be provirulent [30], while the effect of the ushA gene has not been investigated. Our data indicate that this is a possibility worth investigating by creating the ushA mutant and the double ushA and cpdB mutants of APEC.
-
The five complete genomes available for Salmonella Pullorum contain high-score hits for ushA (probe accession number P070724) and cpdB genes (probe accession number P08331) (Table S6, line 78). For this Salmonella serovar, the cpdB gene has been shown previously to be provirulent [31], while the effect of the ushA gene has not been investigated. Our data indicate that this is an interesting possibility to explore by creating the single ushA mutant and the double cpdB and ushA mutants of S. Pullorum.
-
The different species of the genus Streptococcus offer a variety of situations concerning the genomic distribution of ushA-like and cpdB-like genes (see Section 4.3.3). On the other hand, ushA-like genes of S. sanguinis, S. agalactiae, S. pyogenes, and S. suis, and cpdB-like genes of S. agalactiae and S. suis, individually considered, have been shown to be pro-virulent for the producing pathogens. However, the following cases remain to be studied: (i) the combined effect of ushA-like and cpdB-like genes on the virulence of S. agalactiae and S. suis; (ii) the possible effect of cpdB-like genes in the virulence of all the Streptococcus species that contain such genes but so far have not been studied in this concern; (iii) the possible effect of ushA-like genes in the virulence of all the Streptococcus species that contain such genes but so far have not been studied in this concern.
Conceptualization, J.M.R. and J.C.C.; Data curation, J.M.R. and J.C.C.; Formal analysis, J.M.R. and J.C.C.; Investigation, J.M.R. and J.C.C.; Validation, J.M.R.; Writing—original draft, J.C.C.; Writing—review and editing, J.M.R. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
Data are contained within the article or
The authors declare no conflict of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 1. Mutual relatedness among the set of proteins used to select TBlastN probes for bacterial genome analysis. An internal BlastP comparison was run among the 21 proteins in Table 1. The grid intersections show the alignment scores obtained. On the top line, the seven proteins selected for use are colored as in Table 1 to facilitate cross-referencing. Within the grid, the colors identify the proteins with high scores, indicative of strong relatedness. The seven probes selected cover, with high scores, the whole set of proteins. Nss, not significant similitude.
TBlastN analysis of superkingdom Bacteria (taxid:2) with hits recorded among 4185 type-material genomes.
Type of Probe | Probe 1 | Hits | Score Max. | Score Min. |
---|---|---|---|---|
UshA-like | P07024 | 630 | 1099 | 151 |
P44569 | 456 | 1188 | 151 | |
WP_000726911 | 468 | 904 | 151 | |
WP_011837008 | 110 | 1297 | 151 | |
O32133 | 361 | 947 | 171 | |
CpdB-like | P08331 | 1082 | 1301 | 151 |
AYV64543 | 722 | 1579 | 153 |
1 The probes are shown in the same background color as
Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in Bacteria phyla. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in 100% of the genomes analyzed. Full data can be found in
Phylum 1 | Taxid | U | C |
---|---|---|---|
Abditibacteriota | 2109258 | − | − |
Acidobacteriota | 57723 | − | − |
|
201174 | + | + |
Aquificota | 200783 | − | − |
|
67819 | + | + |
Atribacterota | 67818 | + | − |
|
1239 | + | + |
|
976 | + | + |
Balneolota | 1936987 | − | + |
Bdellovibrionota | 3018035 | − | − |
Caldisericota | 67814 | + | − |
Calditrichota | 1930617 | − | + |
|
29547 | + | + |
Chlamydiota | 204428 | − | − |
Chlorobiota | 1090 | − | − |
|
200795 | + | − |
Chrysiogenota | 200938 | − | − |
Coprothermobacterota | 2138240 | − | + |
|
1117 | + | − |
|
200930 | + | − |
|
68525 | + | − |
|
1297 | + | + |
|
68297 | + | − |
Elusimicrobiota | 74152 | − | − |
|
65842 | + | − |
|
32066 | + | + |
|
142182 | − | + |
|
1134404 | − | + |
Kiritimatiellota | 134625 | − | − |
Lentisphaerota | 256845 | − | − |
|
544448 | + | + |
|
2818505 | + | + |
Nitrospinota | 1293497 | − | − |
|
40117 | + | − |
Planctomycetota | 203682 | − | − |
|
1224 | + | + |
Rhodothermota | 1853220 | − | − |
|
203691 | + | + |
|
508458 | + | − |
|
200940 | + | − |
Thermomicrobiota | 3027942 | − | − |
|
200918 | + | + |
|
74201 | − | + |
1 Phyla highlighted in red are not complete according to
Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial classes. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data are in
Phylum | Class 1 | Taxid | U | C |
---|---|---|---|---|
Actinomycetota |
|
84992 | + | − |
|
1760 | + | + | |
Coriobacteriia | 84998 | − | − | |
|
908620 | + | + | |
|
84995 | + | − | |
|
1497346 | + | − | |
Armatimonadota | Armatimonadia | 1042312 | − | − |
Chthonomonadetes | 1077257 | + | − | |
|
1663419 | + | − | |
Bacillota |
|
91061 | + | + |
|
186801 | + | + | |
|
526524 | + | + | |
Limnochordia | 1676648 | + | + | |
|
909932 | + | + | |
|
1737404 | + | − | |
Bacteroidota |
|
200643 | + | + |
Chitinophagia | 1853228 | − | − | |
Cytophagia | 768503 | − | − | |
Flavobacteriia | 117743 | − | − | |
Saprospiria | 1937959 | − | − | |
Sphingobacteriia | 117747 | − | − | |
Campylobacterota | Desulfurellia | 3031853 | − | − |
|
3031852 | + | + | |
Chloroflexota | Anaerolineae | 292625 | − | − |
|
1382928 | + | − | |
Caldilineae | 475962 | − | − | |
Chloroflexia | 32061 | + | − | |
|
301297 | + | − | |
Ktedonobacteria | 388447 | − | − | |
Tepidiformia | 2682225 | − | − | |
Thermoflexia | 1495646 | + | − | |
Cyanobacteriota |
|
3028117 | + | − |
Deferribacterota |
|
68337 | + | − |
Delta/epsilon subdivisions |
|
28221 | + | − |
Deinococcota |
|
188787 | + | + |
Dyctioglomota | Dictyoglomia | 203486 | + | − |
Fibrobacterota | Fibrobacteria | 204430 | − | − |
Fusobacteriota |
|
203490 | + | + |
Gemmatimonadota |
|
219685 | − | + |
Longimicrobiia | 1804991 | − | − | |
Ignavibacteriota |
|
795747 | − | + |
Mycoplasmatota |
|
31969 | + | − |
Mycoplasmoidales | 2790996 | − | − | |
Myxococcota |
|
32015 | + | + |
|
3031711 | + | + | |
Nitrospirota |
|
203693 | + | − |
Thermodesulfovibrionia | 2811502 | − | − | |
Pseudomonadota | Acidithiobacillia | 1807140 | − | − |
|
28211 | + | + | |
|
28216 | + | + | |
|
1236 | + | + | |
Hydrogenophilalia | 2008785 | − | − | |
Zetaproteobacteria | 580370 | − | − | |
Spirochaetota |
|
203692 | + | + |
Synergistota |
|
649775 | + | − |
Thermodesulfobacteriota | Desulfarculia | 3031646 | − | − |
Desulfobaccia | 3031647 | − | − | |
|
3024418 | + | − | |
|
3031451 | + | − | |
Desulfomonilia | 3031650 | + | − | |
|
3031449 | + | − | |
|
3031651 | + | − | |
Syntrophia | 3031648 | + | − | |
|
3024408 | + | − | |
|
67799 | + | − | |
Thermotogota |
|
188708 | + | + |
Verrucomicrobiota | Methylacidiphilae | 1955630 | − | − |
|
414999 | + | + | |
Spartobacteria | 134549 | − | − | |
Verrucomicrobiae | 203494 | − | − |
1 Classes highlighted in red are not complete according to
Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial orders. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in
Class | Order 1 | Taxid | U | C |
---|---|---|---|---|
Acidimicrobiia |
|
84993 | + | − |
Actinomycetes | Acidothermales | 1643683 | − | − |
|
2037 | − | + | |
Actinopolysporales | 622450 | − | − | |
Bifidobacteriales | 85004 | − | − | |
Catenulisporales | 414714 | − | − | |
Frankiales | 85013 | − | − | |
|
1643682 | + | − | |
Glycomycetales | 85014 | + | − | |
|
2805415 | + | + | |
|
622452 | − | + | |
|
85011 | + | + | |
|
85006 | + | + | |
|
85008 | + | + | |
|
85007 | + | − | |
Nakamurellales | 1643684 | − | − | |
|
85009 | + | + | |
|
85010 | + | + | |
Sporichthyales | 2495578 | − | + | |
|
85012 | + | + | |
Nitriliruptoria | Egibacterales | 1747768 | − | − |
Egicoccales | 1755823 | + | + | |
Euzebyales | 908621 | − | − | |
Rubrobacteria |
|
84996 | + | − |
Thermoleophilia |
|
2843198 | + | − |
Solirubrobacterales | 588673 | − | − | |
Thermoleophilales | 588674 | − | − | |
Fimbriimonaadia |
|
1663425 | + | − |
Bacilli |
|
1385 | + | + |
|
186826 | + | + | |
Clostridia |
|
186802 | + | + |
|
53433 | + | + | |
Koleobacterales | 2786987 | − | − | |
Moorellales | 3039167 | − | − | |
Natranaerobiales | 485256 | − | − | |
|
68295 | + | + | |
|
2770089 | + | + | |
Erysipelotrichia |
|
526525 | + | + |
Negativicutes | Acidaminococcales | 1843488 | − | − |
|
909929 | + | + | |
|
1843489 | + | − | |
Tissierella |
|
1737405 | + | − |
Bacteroidia |
|
171549 | + | + |
Marinilabiliales | 1970189 | − | − | |
Epsilonproteobacteria |
|
213849 | + | + |
|
235899 | + | − | |
Dehalococcoidia | Dehalococcoidales | 1202465 | − | − |
Dehalogenimonas | 670486 | − | − | |
Cyanophyceae | Chroococcidiopsidales | 1890505 | − | − |
Gloeobacterales | 307595 | − | − | |
Gloeomargaritales | 1955042 | + | − | |
|
1161 | + | − | |
Chroococcales | 1118 | − | − | |
|
1150 | + | − | |
Pleurocapsales | 52604 | − | − | |
Pseudanabaenales | 2881377 | − | − | |
Synechococcales | 1890424 | − | − | |
Thermostichales | 2881383 | − | − | |
Deferribacteres |
|
191393 | + | − |
Deltaproteobacteria | Bradymonadales | 1779134 | + | − |
Deinococci |
|
118964 | + | + |
|
68933 | + | − | |
Trueperales | 2762275 | − | − | |
Fusobacteriia |
|
203491 | + | + |
Gemmatimonadetes |
|
219686 | − | + |
Ignavibacteria |
|
795748 | − | + |
Mollicutes | Acholeplasmatales | 186329 | − | − |
Entomoplasmatales | 186328 | − | − | |
|
2085 | + | − | |
Myxococcia |
|
29 | + | + |
Polyangia | Haliangiales | 3031714 | − | + |
Nannocystales | 3031713 | + | + | |
|
3031712 | + | + | |
Nitrospiria |
|
189778 | + | − |
Alphaproteobacteria | Caulobacterales | 204458 | − | − |
Emcibacterales | 2066490 | − | − | |
Holosporales | 1921002 | − | − | |
|
356 | + | + | |
|
2800060 | + | − | |
Kordiimonadales | 362534 | − | − | |
Magnetococcales | 1191478 | − | − | |
Maricaulales | 2800059 | − | − | |
Minwuiales | 2493627 | − | − | |
Parvularculales | 255473 | − | − | |
|
204455 | + | + | |
|
204441 | + | + | |
Rickettsiales | 766 | − | − | |
Sneathiellales | 510684 | − | − | |
|
204457 | + | − | |
Betaproteobacteria |
|
80840 | + | + |
Ferrovales | 1442155 | − | − | |
|
206351 | + | + | |
|
32003 | + | − | |
|
206389 | + | + | |
Gammaproteobacteria | Acidiferrobacterales | 1692040 | − | − |
|
135624 | + | + | |
|
135622 | + | + | |
|
135615 | − | + | |
|
1706369 | + | + | |
|
135613 | + | + | |
|
91347 | + | + | |
Immundisolibacterales | 1934945 | + | − | |
Kangiellales | 2887327 | − | − | |
|
118969 | + | − | |
|
135618 | + | − | |
|
2887326 | + | + | |
|
1775403 | + | − | |
|
135619 | + | + | |
|
1240482 | + | + | |
|
135625 | + | + | |
|
72274 | + | − | |
|
72273 | + | + | |
|
135623 | + | + | |
|
135614 | − | + | |
Spirochaetia |
|
1643686 | + | − |
Brevinematales | 1643687 | − | − | |
Leptospirales | 1643688 | − | − | |
|
136 | + | + | |
Synergistia |
|
649775 | + | − |
Desulfobacteria |
|
213118 | + | − |
Desulfobulbia |
|
3024411 | + | − |
Desulfovibrionia |
|
213115 | + | − |
Desulfuromonadia |
|
69541 | + | − |
|
3031668 | + | − | |
Syntrophobacteria |
|
213462 | + | − |
Thermodesulfobacteria |
|
188710 | + | − |
Thermotogae | Kosmotogales | 1643946 | + | + |
Mesoaciditogales | 1769716 | + | + | |
|
1643947 | + | + | |
|
2419 | + | + | |
Opitutae |
|
415000 | + | + |
Puniceicoccales | 415001 | − | − |
1 Orders highlighted in red are not complete according to
Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial families. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in
Order | Family 1 | Taxid | U | C |
---|---|---|---|---|
Acidimicrobiales | Acidimicrobiaceae | 84994 | − | − |
Iamiaceae | 633392 | − | − | |
Ilumatobacteraceae | 2448023 | + | − | |
Actinomycetales |
|
2049 | − | + |
Geodermathophilales |
|
85030 | + | − |
Jatrophihabitantales |
|
2805416 | + | + |
Kineosporiales |
|
83778 | − | + |
Kitasatosporales |
|
2062 | + | + |
Micrococcales | Beutenbergiaceae | 125316 | − | − |
|
145358 | + | + | |
|
85019 | + | + | |
Cellulomonadaceae | 85016 | − | − | |
Demequinaceae | 1042322 | − | − | |
|
85020 | − | + | |
|
145357 | + | + | |
|
85018 | + | − | |
|
85021 | + | + | |
Jonesiaceae | 85022 | − | − | |
Kytococcaceae | 2805426 | + | − | |
|
85023 | + | + | |
|
1268 | + | + | |
|
2805590 | + | − | |
|
85017 | + | − | |
|
1331736 | + | + | |
|
145360 | + | − | |
Tropherymataceae | 2805591 | − | − | |
Micromonosporales |
|
28056 | + | + |
Mycobacteriales |
|
1653 | + | − |
Dietziaceae | 85029 | − | − | |
Gordoniaceae | 85026 | − | − | |
Hoyosellaceae | 3040680 | − | − | |
Lawsonellaceae | 2805586 | − | − | |
Mycobacteriaceae | 1762 | − | − | |
|
85025 | + | − | |
Segniliparaceae | 316606 | − | − | |
|
85028 | + | − | |
Propionibacteriales | Kribbellaceae | 2726069 | + | + |
|
85015 | + | + | |
|
31957 | − | + | |
Pseudonocardiales |
|
2070 | + | + |
Streptosporangiales | Nocardiopsaceae | 83676 | − | − |
|
2004 | + | + | |
|
2012 | + | + | |
Rubrobacterales |
|
2600303 | + | − |
|
84997 | + | − | |
Miltoncostaeales |
|
2843199 | + | − |
Fimbriimonadales | Fimbriimonadaceae | 1663426 | − | − |
Bacillales |
|
186823 | + | + |
|
186817 | + | + | |
Listeriaceae | 186820 | + | − | |
|
186822 | + | + | |
|
186818 | + | + | |
|
186821 | + | + | |
|
90964 | + | + | |
|
186824 | + | + | |
Lactobacillales |
|
186827 | + | + |
|
186828 | + | + | |
|
81852 | + | + | |
|
33958 | + | + | |
|
1300 | + | + | |
Eubacteriales | Aristaeellaceae | 3046368 | − | − |
Cellulosilyticaceae | 3018741 | − | − | |
Christensenellaceae | 990719 | − | − | |
|
31979 | + | + | |
Desulfallaceae | 2867375 | − | − | |
|
2937909 | − | + | |
Desulfotomaculaceae | 2937910 | − | − | |
|
186806 | + | − | |
Heliobacteriaceae | 31984 | − | − | |
|
186803 | + | + | |
Maliibacteriaceae | 3047432 | − | − | |
|
216572 | + | + | |
Peptococcaceae | 186807 | − | − | |
|
186804 | + | − | |
Proteinivoraceae | 1491775 | − | − | |
Symbiobacteriaceae | 543349 | − | − | |
Syntrophomonadaceae | 68298 | − | − | |
Thermincolaceae | 2937911 | − | − | |
|
2603322 | + | + | |
Halanaerobiales |
|
972 | + | + |
Halarsenatibacteraceae | 3046411 | − | − | |
|
53434 | + | + | |
Halothermotrichaceae | 3046412 | − | − | |
Thermoanaerobacterales |
|
186814 | + | + |
Thermodesulfobiaceae | 227387 | − | − | |
Thermosediminibacterales | Tepidanaerobacteraceae | 2770092 | − | − |
Thermosediminibacteraceae | 2770093 | + | + | |
Erysipelotrichales | Coprobacillaceae | 2810280 | − | − |
|
128827 | + | + | |
|
2810281 | + | − | |
Selenomonadales |
|
1843491 | + | + |
|
1843490 | + | + | |
Veillonellales |
|
31977 | + | − |
Tissierellales | Acidilutibacteraceae | 2992717 | − | − |
Gottschalkiaceae | 2042895 | + | − | |
Peptoniphilaceae | 1570339 | − | − | |
Tepidimicrobiaceae | 2992719 | + | − | |
Thermohalobacteraceae | 2848916 | + | − | |
|
1737406 | + | + | |
Bacteroidales |
|
815 | − | + |
|
2005519 | + | + | |
Dysgonomonadaceae | 2005520 | − | − | |
|
2005473 | − | + | |
|
1853231 | + | − | |
Paludibacteraceae | 2005523 | − | − | |
|
171551 | − | + | |
|
171552 | − | + | |
Rikenellaceae | 171550 | − | − | |
Salinivirgaceae | 1970190 | − | − | |
|
2005525 | − | + | |
Tenuifilaceae | 2760872 | − | − | |
Campylobacterales |
|
2808963 | + | − |
|
72294 | + | − | |
|
72293 | − | + | |
Hydrogenimonadaceae | 292630 | − | − | |
Sulfurimonadaceae | 2771471 | − | − | |
Sulfurospirillaceae | 2932623 | − | − | |
Sulfurovaceae | 2771472 | − | − | |
Nautiliales |
|
224467 | + | − |
Nitratiruptoraceae | 2795691 | − | − | |
Nostocales | Aphanizomenonaceae | 1892259 | − | − |
|
2661849 | + | − | |
Hapalosiphonaceae | 1892263 | − | − | |
Nostocaceae | 1162 | − | − | |
Rivulariaceae | 1185 | − | − | |
Tolypothrichaceae | 119859 | − | − | |
Oscillatoriales | Coleofasciculaceae | 1892251 | − | − |
Gomontiellaceae | 1892255 | − | − | |
|
1892252 | + | − | |
Oscillatoriaceae | 1892254 | − | − | |
Deferribacterales | Calditerrivibrionaceae | 2945021 | − | − |
Deferribacteraceae | 191394 | − | − | |
Flexistipitaceae | 2945022 | − | − | |
Geovibrionaceae | 2945019 | + | − | |
Mucispirillaceae | 2945020 | − | − | |
Deinococcales |
|
183710 | + | + |
Thermales |
|
188786 | + | − |
Fusobacteriales |
|
203492 | + | − |
|
1129771 | + | + | |
Gemmatimonadales |
|
219687 | − | + |
Ignavibacteriales | Ignavibacteriaceae | 795749 | − | + |
Melioribacteraceae | 1334117 | − | − | |
Mycoplasmatales |
|
2092 | + | − |
Myxococcales | Anaeromyxobacteraceae | 1524215 | − | − |
|
39 | + | + | |
|
31 | + | + | |
Vulgatibacteraceae | 1524213 | − | + | |
Polyangiales | Labilitrichaceae | 1524216 | − | − |
|
49 | + | + | |
Sandaracinaceae | 1055686 | − | − | |
Nitrospirales |
|
189779 | + | − |
Hyphomicrobiales | Amorphaceae | 2685818 | − | − |
|
255475 | + | + | |
Bartonellaceae | 772 | − | − | |
Beijerinckiaceae | 45404 | − | − | |
Blastochloridaceae | 2831090 | − | − | |
|
2831100 | − | + | |
Breoghaniaceae | 2831104 | + | + | |
|
118882 | + | − | |
Chelatococcaceae | 2036754 | − | − | |
Devosiaceae | 2831106 | + | + | |
Hyphomicrobiaceae | 45401 | − | − | |
Kaistiaceae | 2831111 | − | − | |
Lichenihabitantaceae | 2723775 | − | − | |
|
119045 | + | + | |
Methylocystaceae | 31993 | − | − | |
|
41294 | + | − | |
Parvibaculaceae | 2813035 | − | − | |
Phreatobacteraceae | 2843305 | − | − | |
|
69277 | + | + | |
Pleomorphomonadaceae | 2843308 | + | − | |
|
82115 | + | + | |
|
2821832 | + | + | |
Xanthobacteraceae | 335928 | − | − | |
Hyphomonadales |
|
69657 | + | − |
Rhodobacterales |
|
31989 | + | + |
|
2854170 | + | + | |
Rhodospirillales |
|
433 | + | + |
|
2829815 | + | + | |
Elioraeaceae | 2690195 | + | − | |
Geminicoccaceae | 2066434 | − | − | |
Kiloniellaceae | 597359 | + | + | |
Rhodospirillaceae | 41295 | − | − | |
Stellaceae | 2844601 | − | − | |
Terasakiellaceae | 2813951 | − | − | |
Thalassobaculaceae | 2844864 | − | − | |
|
2844866 | + | + | |
Sphingomonadales |
|
335929 | + | − |
|
41297 | + | − | |
|
2820280 | + | − | |
Zymomonadaceae | 2844881 | − | − | |
Burkholderiales |
|
506 | + | + |
|
119060 | + | + | |
|
80864 | + | + | |
|
75682 | + | + | |
|
2975441 | + | + | |
|
995019 | + | − | |
Neisseriales |
|
1499392 | + | + |
|
481 | + | + | |
Nitrosomonadales | Gallionellaceae | 90627 | − | − |
Methylophilaceae | 32011 | − | − | |
Nitrosomonadaceae | 206379 | − | − | |
Sterolibacteriaceae | 2008793 | − | − | |
Sulfuricellaceae | 2772226 | − | − | |
|
2008790 | + | − | |
Usitatibacteraceae | 2803844 | + | − | |
Rhodocyclales |
|
2008795 | + | − |
Fluviibacteraceae | 2808923 | − | − | |
|
75787 | + | + | |
|
2008794 | + | − | |
Aeromonadales |
|
84642 | + | + |
Succinivibrionaceae | 83763 | − | − | |
Alteromonadales |
|
72275 | + | + |
|
267889 | + | − | |
|
267892 | + | + | |
|
267893 | + | + | |
Moritellaceae | 267891 | + | + | |
|
267888 | + | + | |
|
267894 | + | + | |
|
267890 | + | + | |
Cardiobacteriales | Cardiobacteriaceae | 868 | − | − |
Ignatzschineriaceae | 3018589 | − | + | |
Cellvibrionales |
|
1706371 | + | + |
Halieaceae | 1706372 | − | − | |
|
1706373 | + | + | |
Porticoccaceae | 1706374 | − | − | |
|
1706375 | + | − | |
Chromatiales |
|
1046 | + | − |
|
72276 | + | − | |
|
449719 | + | + | |
Halothiobacillaceae | 255526 | − | − | |
Thioalkalibacteraceae | 2035710 | − | − | |
Thioalkalispiraceae | 1096778 | − | − | |
Wenzhouxiangellaceae | 1676141 | − | − | |
Woeseiaceae | 1738654 | − | − | |
Enterobacterales | Bruguierivoracaceae | 2812006 | − | − |
|
1903416 | − | + | |
|
543 | + | + | |
|
1903409 | + | + | |
|
1903412 | + | + | |
|
1903414 | + | + | |
|
1903410 | + | + | |
|
1903411 | + | + | |
Legionellales | Coxiellaceae | 118968 | − | − |
|
444 | + | − | |
Methylococcales |
|
403 | + | − |
Methylothermaceae | 1486721 | − | − | |
Moraxellales |
|
468 | + | + |
Nevskiales |
|
568386 | + | – |
Steroidobacteraceae | 2689614 | – | – | |
Oceanospirillales |
|
224372 | + | + |
|
2066474 | + | + | |
Hahellaceae | 224379 | + | − | |
|
28256 | + | + | |
Litorivicinaceae | 449732 | − | − | |
|
135620 | + | + | |
Oleiphilaceae | 191033 | + | + | |
|
255527 | + | + | |
Zooshikellaceae | 2898533 | + | − | |
Orbales |
|
1240483 | + | + |
Pasteurellales |
|
712 | + | + |
Pseudomonadales | Marinobacteraceae | 2887365 | − | − |
|
135621 | + | − | |
Thiotrichales | Fastidiosibacteraceae | 2056687 | − | − |
Francisellaceae | 34064 | − | − | |
|
135616 | + | − | |
|
135617 | + | + | |
Vibrionales |
|
641 | + | + |
Xanthomonadales |
|
1775411 | − | + |
|
32033 | − | + | |
Brachyspirales |
|
143786 | + | − |
Spirochaetales | Borreliaceae | 1643685 | − | − |
|
2951104 | + | + | |
|
2791015 | + | + | |
|
137 | + | + | |
|
2845253 | + | + | |
Synergistales | Acetomicrobiaceae | 3029086 | − | − |
Aminithiophilaceae | 3029085 | + | − | |
Aminobacteriaceae | 3029087 | − | − | |
Dethiosulfovibrionaceae | 3029088 | − | − | |
|
649777 | + | − | |
Thermovirgaceae | 3029089 | − | − | |
Desulfobacterales | Desulfatibacillaceae | 3031627 | + | − |
|
213119 | + | − | |
Desulfococcaceae | 2931039 | − | − | |
Desulfolunaceae | 3031622 | − | − | |
|
3031624 | + | − | |
Desulfosudaceae | 2904715 | − | − | |
Desulfobulbales |
|
213121 | + | − |
|
2886822 | + | − | |
Desulfovibrionales | Desulfohalobiaceae | 213117 | − | − |
|
213116 | + | − | |
|
194924 | + | − | |
Desulfuromonadales |
|
213421 | + | − |
Geoalkalibacteraceae | 3031665 | − | − | |
Syntrophotaleaceae | 2812024 | − | − | |
Geobacterales |
|
213422 | + | − |
Syntrophobacteriales |
|
213465 | + | − |
Thermodesulfobacteriales | Thermodesulfatatoraceae | 3031464 | + | − |
Thermodesulfobacteriaceae | 188711 | − | − | |
Petrotogales |
|
1643949 | + | + |
Thermotogales |
|
1643950 | + | + |
Thermotogaceae | 188709 | + | − | |
Opitutales |
|
134623 | + | + |
1 Families highlighted in red are not complete according to
Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial genera. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in
Family | Genus 1 | Taxid | U | C |
---|---|---|---|---|
Actinomycetaceae | Flaviflexus | 1522056 | − | + |
Geodermatophilaceae |
|
38501 | + | − |
Geodermatophilus | 1860 | + | − | |
Modestobacter | 88138 | + | − | |
Jatrophihabitantaceae |
|
1434010 | + | + |
Kineosporiaceae | Kineococcus | 33981 | − | + |
Streptomycetaceae | Kitasatospora | 2063 | + | + |
Peterkaempfera | 2995704 | + | + | |
Streptantibioticus | 2995706 | − | + | |
|
1883 | + | + | |
Bogoriellaceae |
|
154116 | + | + |
Brevibacteriaceae |
|
1696 | + | + |
Dermabacteraceae | Dermabacter | 36739 | − | + |
Dermacoccaceae | Luteipulveratus | 745364 | + | + |
Dermatophilaceae | Austwickia | 1184606 | + | − |
Dermatophilus | 1862 | + | − | |
Intrasporangiaceae | Arsenicicoccus | 267408 | + | − |
Intrasporangium | 53357 | + | + | |
|
53457 | + | − | |
|
367298 | + | + | |
Tetrasphaera | 99479 | − | + | |
Microbacteriaceae |
|
1573 | + | − |
|
33882 | + | + | |
|
2680004 | + | − | |
|
33886 | − | + | |
Micrococcaceae |
|
1663 | + | + |
Ornithinimicrobiaceae |
|
125287 | + | − |
Serinicoccus | 265976 | + | − | |
Promicromonosporaceae |
|
254250 | + | − |
Ruaniaceae | Occultella | 2828348 | + | + |
|
626119 | + | − | |
Sanguibacteraceae |
|
60919 | + | − |
Micromonosporaceae | Actinocatenispora | 390988 | − | + |
Actinoplanes | 1865 | + | + | |
|
35753 | + | + | |
|
1873 | + | + | |
Phytohabitans | 907364 | + | − | |
Salinispora | 168694 | + | − | |
Corynebacteriaceae |
|
1716 | + | + |
Nocardiaceae |
|
1817 | + | − |
|
1827 | + | − | |
Tsukamurellaceae |
|
2060 | + | − |
Nocardioidaceae |
|
1839 | + | + |
Propionibacteriaceae |
|
1912216 | − | + |
Pseudonocardiaceae | Actinosynnema | 40566 | + | − |
|
1813 | + | − | |
Kibdelosporangium | 2029 | + | − | |
|
43356 | + | + | |
Lentzea | 165301 | + | + | |
|
1847 | + | − | |
|
1835 | + | − | |
|
2071 | + | + | |
Streptosporangiaceae |
|
83681 | + | + |
Streptosporangium | 2000 | + | + | |
Thermobispora | 147067 | + | − | |
Thermomonosporaceae |
|
1988 | + | + |
Baekduiaceae |
|
2600304 | + | − |
Rubrobacteraceae |
|
42255 | + | − |
Miltoncostaeaceae |
|
2843200 | + | − |
Alicyclobacillaceae |
|
29330 | + | + |
Effusibacillus | 1502725 | + | − | |
Tumebacillus | 432330 | + | − | |
Bacillaceae |
|
2675234 | + | + |
Allobacillus | 1400133 | + | + | |
Amphibacillus | 29331 | + | − | |
|
704093 | + | − | |
|
150247 | + | + | |
|
1386 | + | + | |
Cytobacillus | 2675230 | + | + | |
|
2837485 | + | + | |
Fervidibacillus | 3033930 | + | − | |
|
129337 | + | + | |
Gracilibacillus | 74385 | + | + | |
Halalkalibacter | 2893056 | + | − | |
|
45667 | + | + | |
|
2837504 | + | + | |
Lederbergia | 2804231 | + | − | |
|
175304 | + | + | |
|
400634 | + | + | |
Mangrovibacillus | 2920444 | + | + | |
Metabacillus | 2675233 | + | + | |
|
182709 | + | + | |
Paenalkalicoccus | 2944627 | + | + | |
Parageobacillus | 1906945 | + | − | |
Paraliobacillus | 200903 | + | + | |
|
2675229 | + | + | |
Priestia | 2800373 | + | + | |
Psychrobacillus | 1221880 | + | + | |
Radiobacillus | 2785518 | + | + | |
|
2685905 | + | + | |
Salimicrobium | 351195 | + | − | |
|
1434042 | + | + | |
Sediminibacillus | 482460 | + | + | |
Sutcliffiella | 2837511 | + | + | |
|
84406 | + | + | |
Weizmannia | 2817139 | + | + | |
Paenibacillaceae |
|
55079 | + | − |
|
55080 | + | + | |
|
329857 | + | + | |
|
44249 | + | + | |
Saccharibacillus | 456492 | + | + | |
Thermobacillus | 76632 | + | − | |
Planococcaceae | Jeotgalibacillus | 157226 | + | − |
|
651660 | + | + | |
|
1372 | + | + | |
|
1569 | + | + | |
Sporolactobacillaceae | Pullulanibacillus | 475230 | + | − |
Sporolactobacillus | 2077 | + | + | |
Staphylococcaceae |
|
69965 | + | + |
|
2803850 | + | + | |
Nosocomiicoccus | 489909 | + | − | |
|
1279 | + | + | |
Thermoactinomycetaceae | Kroppenstedtia | 1274351 | + | + |
Polycladomyces | 1348505 | + | + | |
Novibacillus | 1677050 | + | − | |
Staphylospora | 2689589 | + | − | |
Lactobacillaceae | Acetilactobacillus | 2767874 | + | + |
Amylolactobacillus | 2767876 | + | + | |
Apilactobacillus | 2767877 | + | + | |
|
2767878 | + | + | |
Companilactobacillus | 2767879 | + | − | |
Fructilactobacillus | 2767881 | + | + | |
Fructobacillus | 559173 | + | + | |
|
2759736 | + | + | |
|
2767842 | + | + | |
|
1578 | + | + | |
|
2767885 | + | − | |
Lentilactobacillus | 2767893 | + | + | |
|
1243 | + | + | |
|
2767886 | + | + | |
|
2742598 | + | − | |
|
2767889 | + | + | |
Nicoliella | 2978367 | + | + | |
|
46254 | + | + | |
|
2767890 | + | − | |
|
1253 | − | + | |
Periweissella | 2930384 | + | + | |
|
46255 | + | + | |
Streptococcaceae |
|
1357 | + | + |
|
1301 | + | + | |
Enterococcaceae |
|
1350 | + | + |
Tetragenococcus | 51668 | + | − | |
|
2737 | + | + | |
Carnobacteriaceae |
|
2747 | + | + |
|
117563 | + | + | |
|
1470540 | + | − | |
Aerococcaceae |
|
1375 | + | + |
Suicoccus | 2689587 | + | − | |
Clostridiaceae |
|
114627 | + | + |
|
1485 | + | + | |
|
1848399 | + | − | |
Geosporobacter | 390805 | + | − | |
Hathewaya | 1769729 | + | − | |
|
1849822 | + | + | |
Desulfitobacteriaceae |
|
79206 | − | + |
Eubacteriaceae |
|
1730 | + | − |
Lachnospiraceae |
|
1843210 | + | − |
Anaeromicropila | 3024823 | − | + | |
Anaeropeptidivorans | 2997360 | + | − | |
Herbinix | 1663717 | − | + | |
|
1506553 | − | + | |
Tyzzerella | 1506577 | − | + | |
Oscillospiraceae | Anaerotruncus | 244127 | + | + |
Flavonifractor | 946234 | + | + | |
|
1508657 | + | − | |
|
2892396 | − | + | |
Peptostreptococcaceae | Acetoanaerobium | 186831 | + | − |
Clostridioides | 1870884 | + | − | |
Vallitaleaceae | Petrocella | 2603323 | + | + |
|
1348611 | + | + | |
Halanaerobiaceae |
|
2330 | + | + |
Halocella | 46466 | + | + | |
Iocasia | 2899804 | + | + | |
Halobacteroidaceae | Halobacteroides | 42417 | + | + |
Thermoanaerobacteraceae | Aceticella | 3051499 | + | − |
Caldanaerobacter | 249529 | − | + | |
Carboxydothermus | 129957 | + | + | |
|
1754 | + | + | |
|
28895 | − | + | |
Erysipelotrichaceae |
|
1647 | + | + |
Turicibacteraceae |
|
191303 | + | − |
Selenomonadaceae |
|
970 | + | + |
Sporomusaceae | Methylomusa | 2093783 | + | + |
|
365348 | + | − | |
Veillonellaceae |
|
906 | + | − |
Tissierellaceae | Gudongella | 2692382 | + | − |
Tissierella | 41273 | + | + | |
Bacteroidaceae |
|
816 | − | + |
|
909656 | − | + | |
Barnesiellaceae | Barnesiella | 397864 | + | − |
|
1348911 | − | + | |
Muribaculaceae | Duncaniella | 2518495 | − | + |
Muribaculum | 1918540 | − | + | |
Sodaliphilus | 2815786 | − | + | |
Odoribacteraceae | Odoribacter | 283168 | + | − |
Porphyromonadaceae |
|
836 | − | + |
Prevotellaceae |
|
838 | − | + |
Pseudoprevotella | 2884814 | − | + | |
Tannerellaceae |
|
375288 | − | + |
Arcobacteraceae |
|
28196 | + | − |
|
2321114 | + | − | |
Campylobacteraceae |
|
194 | + | − |
Helicobacteraceae |
|
209 | − | + |
Nautiliaceae |
|
191301 | + | − |
Calotrichaceae |
|
1186 | + | − |
Microcoleaceae | Planktothrix | 54304 | + | − |
Deinococcaceae |
|
1298 | + | + |
Thermaceae | Allomeiothermus | 2935559 | + | − |
Meiothermus | 2747271 | + | − | |
Oceanithermus | 208447 | + | − | |
Thermus | 270 | + | − | |
Fusobacteriaceae |
|
848 | + | − |
Leptotrichiaceae |
|
32067 | + | + |
Pseudoleptotrichia | 2755140 | + | − | |
Sebaldella | 32068 | + | + | |
|
34104 | + | − | |
Gemmatimonadaceae | Gemmatimonas | 173479 | − | + |
Mycoplasmataceae |
|
2767358 | + | − |
Archangiaceae |
|
47 | + | + |
Cystobacter | 42 | + | + | |
Melittangium | 44 | + | + | |
Stigmatella | 40 | + | + | |
Myxococcaceae |
|
83461 | + | + |
|
32 | + | + | |
Polyangiaceae | Chondromyces | 50 | + | − |
Polyangium | 55 | + | + | |
|
39643 | + | + | |
Nitrospiraceae |
|
1234 | + | − |
Aurantimonadaceae | Aurantimonas | 182269 | + | − |
|
414371 | + | + | |
Jiella | 1775688 | + | − | |
Martelella | 293088 | + | + | |
Boseaceae |
|
85413 | − | + |
Brucellaceae | Pseudochrobactrum | 354349 | + | − |
Devosiaceae |
|
46913 | + | + |
Paradevosia | 1573407 | + | + | |
Pelagibacterium | 1082930 | + | + | |
Youhaiella | 1827478 | + | + | |
Methylobacteriaceae |
|
186650 | + | + |
Nitrobacteraceae |
|
374 | + | − |
Rhodopseudomonas | 1073 | + | − | |
Phyllobacteriaceae | Aquibium | 2911176 | + | + |
|
68287 | + | + | |
Nitratireductor | 245876 | + | + | |
Oricola | 1594166 | + | + | |
|
28100 | + | + | |
Roseitalea | 1915401 | + | − | |
Salaquimonas | 2712688 | + | − | |
Rhizobiaceae |
|
357 | + | + |
|
78526 | + | + | |
Ciceribacter | 1648508 | + | + | |
|
106591 | + | + | |
Georhizobium | 2661800 | + | + | |
Neorhizobium | 1525371 | + | + | |
Peteryoungia | 2853332 | + | + | |
Pseudorhizobium | 1903858 | + | + | |
|
379 | + | + | |
|
323620 | + | + | |
|
28105 | + | + | |
Stappiaceae | Labrenzia | 478070 | + | + |
Pannonibacter | 227873 | + | + | |
Roseibium | 150830 | + | + | |
Stappia | 152161 | + | − | |
Paracoccaceae | Algicella | 3050722 | + | + |
|
1653176 | + | + | |
Frigidibacter | 1775705 | + | + | |
|
204456 | + | + | |
Gymnodinialimonas | 2937410 | + | + | |
Neotabrizicola | 2946607 | − | + | |
Pacificitalea | 2846749 | + | + | |
|
265 | + | + | |
Parasedimentitalea | 2738399 | + | + | |
Paroceanicella | 2683599 | + | + | |
Pelagovum | 2795377 | + | + | |
Polymorphum | 991903 | + | − | |
Pontivivens | 1844015 | + | + | |
Profundibacter | 2778525 | − | + | |
Pseudooceanicola | 1679449 | + | + | |
Pseudopuniceibacterium | 2613960 | + | + | |
Pseudorhodobacter | 238783 | − | + | |
Pukyongiella | 2831925 | + | + | |
Qingshengfaniella | 2816884 | + | + | |
Rhodobaca | 119541 | + | + | |
Rhodovulum | 34008 | + | + | |
Roseicitreum | 1209946 | + | + | |
Silicimonas | 1955420 | + | + | |
Tabrizicola | 1443919 | + | + | |
Thioclava | 285107 | − | + | |
Roseobacteraceae | Celeribacter | 875170 | + | + |
Dinoroseobacter | 309512 | + | + | |
Falsihalocynthiibacter | 2854182 | + | + | |
Leisingera | 191028 | + | + | |
|
53945 | + | + | |
Phaeobacter | 302485 | + | + | |
Roseibacterium | 159345 | + | + | |
Roseobacter | 2433 | + | + | |
|
74030 | + | + | |
|
97050 | + | + | |
|
263377 | + | + | |
|
60136 | + | + | |
Acetobacteraceae |
|
434 | − | + |
Lichenicola | 2804525 | − | + | |
|
125216 | + | + | |
Azospirillaceae |
|
204447 | + | + |
Thalassospiraceae | Thalassospira | 168934 | + | + |
Erythrobacteraceae |
|
361177 | + | − |
|
2800681 | + | − | |
Croceicoccus | 1295327 | + | − | |
Pelagerythrobacter | 2800685 | + | − | |
|
1855416 | + | − | |
Tsuneonella | 2800686 | + | − | |
Sphingomonadaceae |
|
165696 | + | − |
|
13687 | + | − | |
Sphingosinicellaceae |
|
335405 | + | − |
Alcaligenaceae |
|
222 | + | + |
|
517 | + | + | |
Burkholderiaceae |
|
32008 | − | + |
Chitinimonas | 240411 | + | − | |
|
106589 | + | + | |
Ephemeroptericola | 2680021 | + | − | |
|
1822464 | − | + | |
|
48736 | + | + | |
Comamonadaceae |
|
12916 | + | + |
|
283 | + | + | |
|
80865 | + | + | |
|
238749 | + | + | |
|
219181 | + | + | |
Paenacidovorax | 3051138 | + | + | |
Paracidovorax | 3051137 | + | + | |
|
28065 | + | + | |
Oxalobacteraceae |
|
202907 | + | + |
Duganella | 75654 | + | + | |
|
29580 | + | + | |
|
149698 | + | + | |
Pseudoduganella | 1522432 | + | + | |
Telluria | 34069 | + | + | |
|
401469 | + | + | |
Sphaerotilaceae |
|
196013 | + | − |
Ideonella | 36862 | + | − | |
Inhella | 644355 | + | + | |
Sutterellaceae |
|
40544 | + | − |
Chromobacteriaceae |
|
230666 | + | − |
|
535 | + | + | |
Deefgea | 400947 | + | − | |
|
32014 | + | + | |
|
400060 | + | + | |
Neisseriaceae |
|
194195 | + | + |
Chitinolyticbacter | 1055692 | + | − | |
Conchiformibius | 334107 | + | − | |
|
32257 | + | + | |
|
482 | + | − | |
Simonsiella | 71 | − | + | |
Wielerella | 2944815 | − | + | |
Thiobacillaceae |
|
919 | + | − |
Azonexaceae |
|
73029 | + | − |
Ferribacterium | 88875 | + | − | |
Rhodocyclaceae | Niveibacterium | 1769726 | + | + |
Zoogloeaceae |
|
12960 | + | − |
Nitrogeniibacter | 2891294 | + | − | |
Aeromonadaceae |
|
642 | + | + |
Alteromonadaceae |
|
261825 | + | + |
Hydrocarboniclastica | 2650549 | + | − | |
Saliniradius | 2661818 | + | − | |
Colwelliaceae | Litorilituus | 1407056 | + | − |
Ferrimonadaceae |
|
44011 | + | + |
Idiomarinaceae |
|
135575 | + | + |
Pseudoalteromonadaceae |
|
53246 | + | + |
|
907197 | − | + | |
Psychromonadaceae |
|
67572 | + | + |
Shewanellaceae | Parashewanella | 2547964 | + | + |
|
22 | + | + | |
Cellvibrionaceae | Marinagarivorans | 1792291 | − | + |
Saccharophagus | 316625 | − | + | |
|
2425 | + | + | |
Microbulbiferaceae |
|
48073 | + | + |
Spongiibacteraceae | Spongiibacter | 630749 | + | − |
Chromatiaceae | Allochromatium | 85072 | + | − |
Caldichromatium | 2828366 | + | − | |
Marichromatium | 85076 | + | − | |
Thermochromatium | 85073 | + | − | |
Thiocapsa | 1056 | + | − | |
Thiocystis | 13724 | + | − | |
Ectothiorhodospiraceae |
|
106633 | + | − |
Granulosicoccaceae | Granulosicoccus | 437504 | + | + |
Budviciaceae | Pragia | 82984 | − | + |
Enterobacteriaceae | Atlantibacter | 1903434 | + | + |
Cedecea | 158483 | + | + | |
Citrobacter | 544 | + | + | |
Cronobacter | 413496 | + | + | |
|
547 | + | + | |
|
561 | + | + | |
Jejubacter | 2815296 | + | + | |
|
570 | + | + | |
Kluyvera | 579 | + | + | |
Kosakonia | 1330547 | + | + | |
Leclercia | 83654 | + | + | |
|
1330545 | + | + | |
|
702 | + | + | |
Pseudocitrobacter | 1504576 | + | + | |
|
160674 | + | + | |
|
590 | + | + | |
Scandinavium | 2726810 | + | + | |
|
620 | + | + | |
Shimwellia | 1335483 | + | − | |
Symbiopectobacterium | 801 | + | + | |
Erwiniaceae |
|
551 | + | + |
Mixta | 2100764 | + | + | |
|
53335 | + | + | |
Hafniaceae | Edwardsiella | 635 | + | − |
Hafnia | 568 | + | + | |
Obesumbacterium | 82982 | + | + | |
Morganellaceae |
|
637 | + | − |
Morganella | 581 | + | + | |
Photorhabdus | 29487 | + | + | |
Proteus | 583 | + | + | |
|
586 | + | + | |
Xenorhabdus | 626 | + | + | |
Pectobacteriaceae |
|
71655 | + | + |
Dickeya | 204037 | + | + | |
Pectobacteriaceae |
|
122277 | + | + |
Yersiniaceae | Chania | 1745211 | + | + |
Gibbsiella | 929812 | + | − | |
Rouxiella | 1565532 | − | + | |
|
613 | + | + | |
Yersinia | 629 | + | + | |
Legionellaceae |
|
445 | + | − |
Methylococcaceae | Methylocaldum | 73778 | + | − |
Methylococcus | 413 | + | − | |
Methylomagnum | 1760987 | + | − | |
|
416 | + | − | |
Moraxellaceae |
|
469 | + | + |
Aquirhabdus | 2824158 | − | + | |
|
475 | − | + | |
Nevskiaceae | Solimonas | 413435 | + | – |
Alcanivoracaceae |
|
59753 | + | + |
Alloalcanivorax | 3020832 | + | + | |
Endozoicomonadaceae |
|
305899 | + | + |
Halomonadaceae | Cobetia | 204286 | + | + |
Zymobacter | 33073 | + | − | |
Oceanospirillaceae | Aliamphritea | 3018276 | + | − |
Marinomonas | 28253 | + | + | |
|
75687 | + | − | |
|
187492 | + | + | |
Saccharospirillaceae | Gynuella | 1445504 | + | + |
Reinekea | 230494 | + | − | |
Saccharospirillum | 231683 | + | + | |
Orbaceae | Frischella | 1335631 | − | + |
Gilliamella | 1193503 | + | + | |
Zophobihabitans | 2894762 | + | − | |
Pasteurellaceae |
|
713 | + | + |
|
416916 | + | + | |
|
292486 | + | + | |
Basfia | 697331 | + | + | |
Bisgaardia | 109471 | + | + | |
Frederiksenia | 1649317 | + | + | |
|
724 | + | + | |
|
75984 | + | + | |
Otariodibacter | 1249016 | + | + | |
|
745 | + | + | |
|
1960084 | + | + | |
Pseudomonadaceae |
|
286 | + | − |
|
2901164 | + | − | |
Piscirickettsiaceae |
|
2039723 | + | − |
Thiotrichaceae | Beggiatoa | 1021 | + | − |
|
1030 | + | + | |
Vibrionaceae |
|
511678 | + | + |
|
2042066 | + | − | |
|
657 | + | + | |
|
51366 | + | + | |
|
2014233 | + | − | |
|
662 | + | + | |
Rhodanobacteraceae | Aerosticca | 2707020 | − | + |
Dokdonella | 323413 | − | + | |
Dyella | 231454 | − | + | |
Frateuria | 70411 | − | + | |
Luteibacter | 242605 | − | + | |
Rhodanobacter | 75309 | − | + | |
Xanthomonadaceae | Pseudolysobacter | 2709666 | − | + |
Brachyspiraceae |
|
29521 | + | − |
Breznakiellaceae | Breznakiella | 2845254 | + | + |
Gracilinema | 2951106 | + | + | |
Leadbettera | 2951107 | + | − | |
Sphaerochaetaceae |
|
399320 | + | + |
Spirochaetaceae | Entomospira | 2834378 | + | + |
Sediminispirochaeta | 1911556 | + | − | |
Thiospirochaeta | 2792240 | + | + | |
Treponemataceae | Brucepastera | 2967962 | + | − |
|
157 | + | + | |
Synergistaceae | Thermanaerovibrio | 81461 | + | − |
Desulfobacteraceae | Desulforapulum | 2904687 | + | − |
Desulfosarcinaceae |
|
2299 | + | − |
Desulfobulbaceae |
|
893 | + | − |
Desulfocapsaceae |
|
2886823 | + | − |
Desulfomicrobiaceae |
|
898 | + | − |
Desulfovibrionaceae |
|
872 | + | − |
|
2035811 | + | − | |
Salidesulfovibrio | 2950010 | + | − | |
Solidesulfovibrio | 2910984 | + | − | |
Desulfuromonadaceae | Pelobacter | 18 | + | − |
Geobacteraceae | Trichlorobacter | 115782 | + | − |
Syntrophobacteraceae | Syntrophobacter | 29526 | + | − |
Petrotogaceae | Defluviitoga | 1511648 | + | + |
|
160798 | + | + | |
Oceanotoga | 1255275 | + | + | |
Petrotoga | 28236 | + | + | |
Tepiditoga | 2778400 | + | + | |
Fervidobacteriaceae |
|
2422 | + | + |
Thermosipho | 2420 | + | + | |
Opitutaceae | Horticoccus | 2986286 | − | + |
Opitutus | 178440 | − | + |
1 Genera highlighted in red are not complete according to
Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial species. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in
Species 1 | Taxid | U | C |
---|---|---|---|
|
471 | + | − |
Aerococcus urinae | 1376 | − | − |
Aeromonas hydrophila | 644 | + | + |
Bacillus anthracis | 1392 | + | + |
Bacillus cereus | 1396 | + | + |
|
1423 | + | + |
Borrelia burgdorferi | 139 | − | − |
Brucella abortus | 235 | − | − |
Brucella melitensis | 29459 | − | − |
Brucella suis | 29461 | − | − |
Campylobacter jejuni | 197 | − | − |
Chlamydia abortus | 83555 | − | − |
Chlamydia muridarum | 83560 | − | − |
Chlamydia pecorum | 85991 | − | − |
Chlamydia pneumoniae | 83558 | − | − |
Chlamydia psittaci | 83554 | − | − |
Chlamydia trachomatis | 813 | − | − |
Citrobacter freundii | 546 | + | + |
Citrobacter koseri | 545 | + | + |
Citrobacter rodentium | 67825 | + | + |
Clostridioides difficile | 1496 | + | − |
|
1491 | + | + |
|
1502 | + | + |
Clostridium tetani | 1513 | − | + |
Corynebacterium diphtheriae | 1717 | − | − |
Coxiella burnetii | 777 | − | − |
Enterobacter cloacae | 550 | + | + |
|
33945 | + | + |
|
1351 | + | + |
|
1352 | + | + |
Escherichia albertii | 208962 | + | + |
|
562 | + | + |
Escherichia fergusonii | 564 | + | + |
Francisella tularensis | 263 | − | − |
Haemophilus influenzae | 727 | + | + |
Haemophilus parainfluenzae | 729 | + | + |
Hafnia alvei | 569 | + | + |
|
210 | − | + |
Klebsiella aerogenes | 548 | + | + |
Klebsiella oxytoca | 571 | + | + |
|
573 | + | + |
Kluyvera ascorbate | 51288 | + | + |
|
446 | + | − |
Leptospira borgpetersenii | 174 | − | − |
Leptospira interrogans | 173 | − | − |
Leptospira kirschneri | 29507 | − | − |
Leptospira noguchii | 28182 | − | − |
Leptospira santarosai | 28183 | − | − |
Leptospira weilii | 28184 | − | − |
|
1639 | + | − |
Moraxella catarrhalis | 480 | − | − |
Morganella morganii | 582 | + | + |
Mycobacterium avium | 1764 | − | − |
Mycobacterium intracellulare | 1767 | − | − |
Mycobacterium leprae | 1769 | − | − |
Mycobacterium tuberculosis | 1773 | − | − |
Mycobacterium ulcerans | 1809 | − | − |
Mycoplasma leachii | 2105 | − | − |
Mycoplasma mycoides | 2102 | − | − |
Mycoplasma putrefaciens | 2123 | − | − |
Neisseria gonorrhoeae | 485 | − | − |
Neisseria meningitidis | 487 | − | − |
|
747 | + | + |
|
703 | + | + |
Proteus mirabilis | 584 | + | + |
Proteus vulgaris | 585 | + | + |
|
588 | + | + |
Pseudomonas aeruginosa | 287 | − | − |
|
294 | + | − |
Rickettsia rickettsii | 783 | − | − |
Salmonella bongori | 54736 | + | + |
|
28901 | + | + |
Salmonella enterica subsp. arizonae | 59203 | + | + |
Salmonella enterica subsp. diarizonae | 59204 | + | + |
S. enterica subsp. enterica ser. Pullorum | 605 | + | + |
S. enterica subsp. enterica ser. Typhi | 90370 | + | + |
|
90371 | − | + |
Salmonella enterica subsp. houtenae | 59205 | + | + |
Salmonella enterica subsp. salamae | 59202 | + | + |
Salmonella enterica subsp. VII | 59208 | + | + |
Serratia liquefaciens | 614 | + | + |
|
615 | + | + |
Shigella boydii | 621 | + | + |
Shigella dysenteriae | 622 | + | + |
Shigella flexneri | 623 | + | + |
Shigella sonnei | 624 | + | + |
|
1280 | + | − |
Staphylococcus epidermidis | 1282 | + | − |
|
29385 | + | + |
|
1292 | + | + |
Stenotrophomonas maltophilia | 40324 | − | − |
|
1311 | + | + |
|
1334 | + | + |
Streptococcus mitis | 28037 | − | − |
Streptococcus mutans | 1309 | + | − |
|
1501662 | + | + |
Streptococcus pneumoniae | 1313 | − | − |
Streptococcus pyogenes | 1314 | + | − |
Streptococcus sanguinis | 1305 | + | + |
|
1307 | + | + |
Streptococcus thermophilus | 1308 | + | + |
Treponema pallidum | 160 | + | − |
|
666 | + | + |
Yersinia enterocolitica | 630 | + | + |
Yersinia intermedia | 631 | + | + |
Yersinia pestis | 632 | + | + |
Yersinia pseudotuberculosis | 633 | + | + |
1 Species highlighted in red are not complete according to
Numbers of taxa probed, analyzed, and deemed complete after TBlastN analyses with UshA-like (U) and CpdB-like (C) probes: breakdown by kind of results obtained, with presence (+) and/or absence (−) of hits with each probe type. The data are computed from the tables indicated.
Level | (Tables) | Number of Taxa Probed 1 | Number of Taxa without Genomes 2 | Number of Taxa |
Number of Complete Taxa 4 | Breakdown of Complete Taxa |
|||
---|---|---|---|---|---|---|---|---|---|
U+ C+ | U+ C− | U− C+ | U− C− | ||||||
Phylum | 43 | 0 | 43 | 19 | 0 | 2 | 3 | 14 | |
Class | 76 | 6 | 70 | 31 | 1 | 6 | 0 | 24 | |
Order | 152 | 20 | 132 | 53 | 4 | 4 | 2 | 43 | |
Family | 403 | 99 | 304 | 139 | 7 | 16 | 3 | 113 | |
Genus | 510 | 0 | 510 | 268 | 136 | 95 | 37 | 0 | |
Species | 107 | 0 | 107 | 80 | 37 | 5 | 1 | 37 | |
Total | - | 1291 | 125 | 1166 | 590 | 185 | 128 | 46 | 231 |
1 Taxa that were submitted to TBlastN analysis with the seven probes. 2 Taxa that, according to TBlastN analysis, do not contain sequenced genomes in the NCBI Complete Genomes Database. 3 Taxa with sequenced genomes in the NCBI Complete Genomes Database, and that were effectively analyzed. 4 Taxa declared complete according to
Complete taxa that contain both ushA-like and cpdB-like genes. No bacterial phylum showed these characteristics.
Class | Genus | Genus | |||
---|---|---|---|---|---|
Limnochordia | 1676648 | Kitasatospora | 2063 | Roseibium | 150830 |
Order | Kluyvera | 579 | Roseicitreum | 1209946 | |
Egicoccales | 1755823 | Kosakonia | 1330547 | Roseobacter | 2433 |
Kosmotogales | 1643946 | Kroppenstedtia | 1274351 | Saccharibacillus | 456492 |
Mesoaciditogales | 1769716 | Labrenzia | 478070 | Saccharospirillum | 231683 |
Nannocystales | 3031713 | Leclercia | 83654 | Scandinavium | 2726810 |
Family | Leisingera | 191028 | Sebaldella | 32068 | |
Breoghaniaceae | 2831104 | Lentilactobacillus | 2767893 | Sediminibacillus | 482460 |
Devosiaceae | 2831106 | Lentzea | 165301 | Silicimonas | 1955420 |
Kiloniellaceae | 597359 | Luteipulveratus | 745364 | Sporolactobacillus | 2077 |
Kribbellaceae | 2726069 | Mangrovibacillus | 2920444 | Stigmatella | 40 |
Moritellaceae | 267891 | Marinomonas | 28253 | Streptosporangium | 2000 |
Oleiphilaceae | 191033 | Martelella | 293088 | Sutcliffiella | 2837511 |
Thermosediminibacteraceae | 2770093 | Melittangium | 44 | Symbiopectobacterium | 801 |
Genus | Metabacillus | 2675233 | Tabrizicola | 1443919 | |
Acetilactobacillus | 2767874 | Methylomusa | 2093783 | Telluria | 34069 |
Actinoplanes | 1865 | Mixta | 2100764 | Tepiditoga | 2778400 |
Algicella | 3050722 | Morganella | 581 | Thalassospira | 168934 |
Alloalcanivorax | 3020832 | Neorhizobium | 1525371 | Thermosipho | 2420 |
Allobacillus | 1400133 | Nicoliella | 2978367 | Thiospirochaeta | 2792240 |
Amylolactobacillus | 2767876 | Nitratireductor | 245876 | Tissierella | 41273 |
Anaerotruncus | 244127 | Niveibacterium | 1769726 | Weizmannia | 2817139 |
Apilactobacillus | 2767877 | Obesumbacterium | 82982 | Xenorhabdus | 626 |
Aquibium | 2911176 | Occultella | 2828348 | Yersinia | 629 |
Atlantibacter | 1903434 | Oceanotoga | 1255275 | Youhaiella | 1827478 |
Basfia | 697331 | Oricola | 1594166 | Species | |
Bisgaardia | 109471 | Otariodibacter | 1249016 | Aeromonas hydrophila | 644 |
Breznakiella | 2845254 | Pacificitalea | 2846749 | Bacillus anthracis | 1392 |
Carboxydothermus | 129957 | Paenacidovorax | 3051138 | Bacillus cereus | 1396 |
Cedecea | 158483 | Paenalkalicoccus | 2944627 | Citrobacter freundii | 546 |
Celeribacter | 875170 | Pannonibacter | 227873 | Citrobacter koseri | 545 |
Chania | 1745211 | Paracidovorax | 3051137 | Citrobacter rodentium | 67825 |
Ciceribacter | 1648508 | Paradevosia | 1573407 | Enterobacter cloacae | 550 |
Citrobacter | 544 | Paraliobacillus | 200903 | Escherichia albertii | 208962 |
Cobetia | 204286 | Parasedimentitalea | 2738399 | Escherichia fergusonii | 564 |
Cronobacter | 413496 | Parashewanella | 2547964 | Haemophilus influenzae | 727 |
Cystobacter | 42 | Paroceanicella | 2683599 | H. parainfluenzae | 729 |
Cytobacillus | 2675230 | Pelagibacterium | 1082930 | Hafnia alvei | 569 |
Defluviitoga | 1511648 | Pelagovum | 2795377 | Klebsiella aerogenes | 548 |
Dickeya | 204037 | Periweissella | 2930384 | Klebsiella oxytoca | 571 |
Dinoroseobacter | 309512 | Peterkaempfera | 2995704 | Kluyvera ascorbata | 51288 |
Duganella | 75654 | Peteryoungia | 2853332 | Morganella morganii | 582 |
Entomospira | 2834378 | Petrocella | 2603323 | Proteus mirabilis | 584 |
Falsihalocynthiibacter | 2854182 | Petrotoga | 28236 | Proteus vulgaris | 585 |
Flavonifractor | 946234 | Phaeobacter | 302485 | Salmonella bongori | 54736 |
Frederiksenia | 1649317 | Photorhabdus | 29487 | S. enterica subsp. arizonae | 59203 |
Frigidibacter | 1775705 | Polyangium | 55 | S. enterica subsp. diarizonae | 59204 |
Fructilactobacillus | 2767881 | Polycladomyces | 1348505 | S. enterica subsp. enterica ser. Pullorum | 605 |
Fructobacillus | 559173 | Pontivivens | 1844015 | S. enterica subsp. enterica ser. Typhi | 90370 |
Georhizobium | 2661800 | Priestia | 2800373 | S. enterica subsp. houtenae | 59205 |
Gilliamella | 1193503 | Proteus | 583 | S. enterica subsp. salamae | 59202 |
Gracilibacillus | 74385 | Pseudocitrobacter | 1504576 | S. enterica subsp. VII | 59208 |
Gracilinema | 2951106 | Pseudoduganella | 1522432 | Serratia liquefaciens | 614 |
Granulosicoccus | 437504 | Pseudooceanicola | 1679449 | Shigella boydii | 621 |
Gymnodinialimonas | 2937410 | Pseudopuniceibacterium | 2613960 | Shigella dysenteriae | 622 |
Gynuella | 1445504 | Pseudorhizobium | 1903858 | Shigella flexneri | 623 |
Halobacteroides | 42417 | Psychrobacillus | 1221880 | Shigella sonnei | 624 |
Hafnia | 568 | Pukyongiella | 2831925 | Streptococcus sanguinis | 1305 |
Halocella | 46466 | Qingshengfaniella | 2816884 | Streptococcus thermophilus | 1308 |
Inhella | 644355 | Radiobacillus | 2785518 | Yersinia enterocolitica | 630 |
Intrasporangium | 53357 | Rhodobaca | 119541 | Yersinia intermedia | 631 |
Iocasia | 2899804 | Rhodovulum | 34008 | Yersinia pestis | 632 |
Jejubacter | 2815296 | Roseibacterium | 159345 | Yersinia pseudotuberculosis | 633 |
Complete taxa that do not contain ushA-like or cpdB-like genes. No complete genus showed these characteristics.
Phylum | Order | Family | |||
Abditibacteriota | 2109258 | Synechococcales | 1890424 | Paludibacteraceae | 2005523 |
Acidobacteriota | 57723 | Thermoleophilales | 588674 | Parvibaculaceae | 2813035 |
Aquificota | 200783 | Thermostichales | 2881383 | Peptococcaceae | 186807 |
Bdellovibrionota | 3018035 | Trueperales | 2762275 | Peptoniphilaceae | 1570339 |
Chlamydiota | 204428 | Family | Phreatobacteraceae | 2843305 | |
Chlorobiota | 1090 | Acetomicrobiaceae | 3029086 | Porticoccaceae | 1706374 |
Chrysiogenota | 200938 | Acidilutibacteraceae | 2992717 | Proteinivoraceae | 1491775 |
Elusimicrobiota | 74152 | Acidimicrobiaceae | 84994 | Rhodospirillaceae | 41295 |
Kiritimatiellota | 134625 | Aminobacteriaceae | 3029087 | Rikenellaceae | 171550 |
Lentisphaerota | 256845 | Amorphaceae | 2685818 | Rivulariaceae | 1185 |
Nitrospinota | 1293497 | Anaeromyxobacteraceae | 1524215 | Salinivirgaceae | 1970190 |
Planctomycetota | 203682 | Aphanizomenonaceae | 1892259 | Sandaracinaceae | 1055686 |
Rhodothermota | 1853220 | Aristaeellaceae | 3046368 | Segniliparaceae | 316606 |
Thermomicrobiota | 3027942 | Bartonellaceae | 772 | Stellaceae | 2844601 |
Class | Beijerinckiaceae | 45404 | Steroidobacteraceae | 2689614 | |
Acidithiobacillia | 1807140 | Beutenbergiaceae | 125316 | Sterolibacteriaceae | 2008793 |
Anaerolineae | 292625 | Blastochloridaceae | 2831090 | Succinivibrionaceae | 83763 |
Armatimonadia | 1042312 | Borreliaceae | 1643685 | Sulfuricellaceae | 2772226 |
Caldilineae | 475962 | Bruguierivoracaceae | 2812006 | Sulfurimonadaceae | 2771471 |
Chitinophagia | 1853228 | Calditerrivibrionaceae | 2945021 | Sulfurospirillaceae | 2932623 |
Coriobacteriia | 84998 | Cardiobacteriaceae | 868 | Sulfurovaceae | 2771472 |
Cytophagia | 768503 | Cellulomonadaceae | 85016 | Symbiobacteriaceae | 543349 |
Desulfarculia | 3031646 | Cellulosilyticaceae | 3018741 | Syntrophomonadaceae | 68298 |
Desulfobaccia | 3031647 | Chelatococcaceae | 2036754 | Syntrophotaleaceae | 2812024 |
Desulfurellia | 3031853 | Christensenellaceae | 990719 | Tenuifilaceae | 2760872 |
Fibrobacteria | 204430 | Coleofasciculaceae | 1892251 | Tepidanaerobacteraceae | 2770092 |
Flavobacteriia | 117743 | Coprobacillaceae | 2810280 | Terasakiellaceae | 2813951 |
Hydrogenophilalia | 2008785 | Coxiellaceae | 118968 | Thalassobaculaceae | 2844864 |
Ktedonobacteria | 388447 | Deferribacteraceae | 191394 | Thermincolaceae | 2937911 |
Longimicrobiia | 1804991 | Demequinaceae | 1042322 | Thermodesulfobacteriaceae | 188711 |
Methylacidiphilae | 1955630 | Desulfallaceae | 2867375 | Thermodesulfobiaceae | 227387 |
Mycoplasmoidales | 2790996 | Desulfococcaceae | 2931039 | Thermovirgaceae | 3029089 |
Saprospiria | 1937959 | Desulfohalobiaceae | 213117 | Thioalkalibacteraceae | 2035710 |
Spartobacteria | 134549 | Desulfolunaceae | 3031622 | Thioalkalispiraceae | 1096778 |
Sphingobacteriia | 117747 | Desulfosudaceae | 2904715 | Tolypothrichaceae | 119859 |
Tepidiformia | 2682225 | Desulfotomaculaceae | 2937910 | Tropherymataceae | 2805591 |
Thermodesulfovibrionia | 2811502 | Dethiosulfovibrionaceae | 3029088 | Wenzhouxiangellaceae | 1676141 |
Verrucomicrobiae | 203494 | Dietziaceae | 85029 | Woeseiaceae | 1738654 |
Zetaproteobacteria | 580370 | Dysgonomonadaceae | 2005520 | Xanthobacteraceae | 335928 |
Order | Fastidiosibacteraceae | 2056687 | Zymomonadaceae | 2844881 | |
Acholeplasmatales | 186329 | Fimbriimonadaceae | 1663426 | Species | |
Acidaminococcales | 1843488 | Flexistipitaceae | 2945022 | Aerococcus urinae | 1376 |
Acidiferrobacterales | 1692040 | Fluviibacteraceae | 2808923 | Borrelia burgdorferi | 139 |
Acidothermales | 1643683 | Francisellaceae | 34064 | Brucella abortus | 235 |
Actinopolysporales | 622450 | Gallionellaceae | 90627 | Brucella melitensis | 29459 |
Bifidobacteriales | 85004 | Geminicoccaceae | 2066434 | Brucella suis | 29461 |
Brevinematales | 1643687 | Geoalkalibacteraceae | 3031665 | Campylobacter jejuni | 197 |
Catenulisporales | 414714 | Gomontiellaceae | 1892255 | Chlamydia abortus | 83555 |
Caulobacterales | 204458 | Gordoniaceae | 85026 | Chlamydia muridarum | 83560 |
Chroococcidiopsidales | 1890505 | Halarsenatibacteraceae | 3046411 | Chlamydia pecorum | 85991 |
Chroococcales | 1118 | Halieaceae | 1706372 | Chlamydia pneumoniae | 83558 |
Dehalococcoidales | 1202465 | Halothermotrichaceae | 3046412 | Chlamydia psittaci | 83554 |
Dehalogenimonas | 670486 | Halothiobacillaceae | 255526 | Chlamydia trachomatis | 813 |
Egibacterales | 1747768 | Hapalosiphonaceae | 1892263 | Corynebacterium diphtheriae | 1717 |
Emcibacterales | 2066490 | Heliobacteriaceae | 31984 | Coxiella burnetiid | 777 |
Entomoplasmatales | 186328 | Hoyosellaceae | 3040680 | Francisella tularensis | 263 |
Euzebyales | 908621 | Hydrogenimonadaceae | 292630 | Leptospira borgpetersenii | 174 |
Ferrovales | 1442155 | Hyphomicrobiaceae | 45401 | Leptospira interrogans | 173 |
Frankiales | 85013 | Iamiaceae | 633392 | Leptospira kirschneri | 29507 |
Gloeobacterales | 307595 | Jonesiaceae | 85022 | Leptospira noguchii | 28182 |
Holosporales | 1921002 | Kaistiaceae | 2831111 | Leptospira santarosai | 28183 |
Kangiellales | 2887327 | Labilitrichaceae | 1524216 | Leptospira weilii | 28184 |
Koleobacterales | 2786987 | Lawsonellaceae | 2805586 | Moraxella catarrhalis | 480 |
Kordiimonadales | 362534 | Lichenihabitantaceae | 2723775 | Mycobacterium avium | 1764 |
Leptospirales | 1643688 | Litorivicinaceae | 449732 | Mycobacterium intracellulare | 1767 |
Magnetococcales | 1191478 | Maliibacteriaceae | 3047432 | Mycobacterium leprae | 1769 |
Maricaulales | 2800059 | Marinobacteraceae | 2887365 | Mycobacterium tuberculosis | 1773 |
Marinilabiliales | 1970189 | Melioribacteraceae | 1334117 | Mycobacterium ulcerans | 1809 |
Minwuiales | 2493627 | Methylocystaceae | 31993 | Mycoplasma leachii | 2105 |
Moorellales | 3039167 | Methylophilaceae | 32011 | Mycoplasma mycoides | 2102 |
Nakamurellales | 1643684 | Methylothermaceae | 1486721 | Mycoplasma putrefaciens | 2123 |
Natranaerobiales | 485256 | Mucispirillaceae | 2945020 | Neisseria gonorrhoeae | 485 |
Parvularculales | 255473 | Mycobacteriaceae | 1762 | Neisseria meningitidis | 487 |
Pleurocapsales | 52604 | Nitratiruptoraceae | 2795691 | Pseudomonas aeruginosa | 287 |
Pseudanabaenales | 2881377 | Nitrosomonadaceae | 206379 | Rickettsia rickettsii | 783 |
Puniceicoccales | 415001 | Nocardiopsaceae | 83676 | Stenotrophomonas maltophilia | 40324 |
Rickettsiales | 766 | Nostocaceae | 1162 | Streptococcus mitis | 28037 |
Sneathiellales | 510684 | Oscillatoriaceae | 1892254 | Streptococcus pneumoniae | 1313 |
Solirubrobacterales | 588673 |
Complete taxa that contain ushA-like but not cpdB-like genes.
Phylum | Genus | Genus | |||
Atribacterota | 67818 | Beggiatoa | 1021 | Pelagerythrobacter | 2800685 |
Caldisericota | 67814 | Brucepastera | 2967962 | Pelobacter | 18 |
Class | Caldichromatium | 2828366 | Phytohabitans | 907364 | |
Chloroflexia | 32061 | Chitinimonas | 240411 | Planktothrix | 54304 |
Chthonomonadetes | 1077257 | Chitinolyticbacter | 1055692 | Polymorphum | 991903 |
Desulfomonilia | 3031650 | Chondromyces | 50 | Pseudochrobactrum | 354349 |
Dictyoglomia | 203486 | Clostridioides | 1870884 | Pseudoleptotrichia | 2755140 |
Syntrophia | 3031648 | Companilactobacillus | 2767879 | Pullulanibacillus | 475230 |
Thermoflexia | 1495646 | Conchiformibius | 334107 | Reinekea | 230494 |
Order | Croceicoccus | 1295327 | Rhodopseudomonas | 1073 | |
Bradymonadales | 1779134 | Deefgea | 400947 | Roseitalea | 1915401 |
Gloeomargaritales | 1955042 | Dermatophilus | 1862 | Salaquimonas | 2712688 |
Glycomycetales | 85014 | Desulforapulum | 2904687 | Salidesulfovibrio | 2950010 |
Immundisolibacterales | 1934945 | Edwardsiella | 635 | Salimicrobium | 351195 |
Family | Effusibacillus | 1502725 | Saliniradius | 2661818 | |
Aminithiophilaceae | 3029085 | Ephemeroptericola | 2680021 | Salinispora | 168694 |
Desulfatibacillaceae | 3031627 | Ferribacterium | 88875 | Sediminispirochaeta | 1911556 |
Elioraeaceae | 2690195 | Fervidibacillus | 3033930 | Serinicoccus | 265976 |
Geovibrionaceae | 2945019 | Geodermatophilus | 1860 | Shimwellia | 1335483 |
Gottschalkiaceae | 2042895 | Geosporobacter | 390805 | Solidesulfovibrio | 2910984 |
Hahellaceae | 224379 | Gibbsiella | 929812 | Solimonas | 413435 |
Ilumatobacteraceae | 2448023 | Gudongella | 2692382 | Spongiibacter | 630749 |
Kytococcaceae | 2805426 | Halalkalibacter | 2893056 | Staphylospora | 2689589 |
Listeriaceae | 186820 | Hathewaya | 1769729 | Stappia | 152161 |
Pleomorphomonadaceae | 2843308 | Hydrocarboniclastica | 2650549 | Suicoccus | 2689587 |
Tepidimicrobiaceae | 2992719 | Ideonella | 36862 | Syntrophobacter | 29526 |
Thermodesulfatatoraceae | 3031464 | Jeotgalibacillus | 157226 | Tetragenococcus | 51668 |
Thermohalobacteraceae | 2848916 | Jiella | 1775688 | Thermanaerovibrio | 81461 |
Thermotogaceae | 188709 | Kibdelosporangium | 2029 | Thermobacillus | 76632 |
Usitatibacteraceae | 2803844 | Leadbettera | 2951107 | Thermobispora | 147067 |
Zooshikellaceae | 2898533 | Lederbergia | 2804231 | Thermochromatium | 85073 |
Genus | Litorilituus | 1407056 | Thermus | 270 | |
Aceticella | 3051499 | Marichromatium | 85076 | Thiocapsa | 1056 |
Acetoanaerobium | 186831 | Meiothermus | 2747271 | Thiocystis | 13724 |
Actinosynnema | 40566 | Methylocaldum | 73778 | Trichlorobacter | 115782 |
Aliamphritea | 3018276 | Methylococcus | 413 | Tsuneonella | 2800686 |
Allochromatium | 85072 | Methylomagnum | 1760987 | Tumebacillus | 432330 |
Allomeiothermus | 2935559 | Modestobacter | 88138 | Zophobihabitans | 2894762 |
Amphibacillus | 29331 | Nitrogeniibacter | 2891294 | Zymobacter | 33073 |
Anaeropeptidivorans | 2997360 | Nosocomiicoccus | 489909 | Species | |
Arsenicicoccus | 267408 | Novibacillus | 1677050 | Clostridioides difficile | 1496 |
Aurantimonas | 182269 | Oceanithermus | 208447 | Staphylococcus epidermidis | 1282 |
Austwickia | 1184606 | Odoribacter | 283168 | Streptococcus mutans | 1309 |
Barnesiella | 397864 | Parageobacillus | 1906945 | Streptococcus pyogenes | 1314 |
Treponema pallidum | 160 |
Complete taxa that contain cpdB-like but not ushA-like genes. There was no bacterial class showing these characteristics.
Phylum | Genus | Genus | |||
Balneolota | 1936987 | Dokdonella | 323413 | Profundibacter | 2778525 |
Calditrichota | 1930617 | Duncaniella | 2518495 | Pseudolysobacter | 2709666 |
Coprothermobacterota | 2138240 | Dyella | 231454 | Pseudoprevotella | 2884814 |
Order | Flaviflexus | 1522056 | Pseudorhodobacter | 238783 | |
Haliangiales | 3031714 | Frateuria | 70411 | Rhodanobacter | 75309 |
Sporichthyales | 2495578 | Frischella | 1335631 | Rouxiella | 1565532 |
Family | Gemmatimonas | 173479 | Saccharophagus | 316625 | |
Ignatzschineriaceae | 3018589 | Herbinix | 1663717 | Simonsiella | 71 |
Ignavibacteriaceae | 795749 | Horticoccus | 2986286 | Sodaliphilus | 2815786 |
Vulgatibacteraceae | 1524213 | Kineococcus | 33981 | Streptantibioticus | 2995706 |
Genus | Lichenicola | 2804525 | Tetrasphaera | 99479 | |
Actinocatenispora | 390988 | Luteibacter | 242605 | Thioclava | 285107 |
Aerosticca | 2707020 | Marinagarivorans | 1792291 | Tyzzerella | 1506577 |
Anaeromicropila | 3024823 | Muribaculum | 1918540 | Wielerella | 2944815 |
Aquirhabdus | 2824158 | Neotabrizicola | 2946607 | Species | |
Caldanaerobacter | 249529 | Opitutus | 178440 | Clostridium tetani | 1513 |
Dermabacter | 36739 | Pragia | 82984 |
Specicity of probe O32133 for the phylum Bacillota. Comparison between results obtained by querying type-material genomes of the phylum Bacillota and of Superkingdom Bacteria excluding Bacillota.
Phylum Bacillota (Taxid:1239) |
Superkingdom Bacteria (Taxid:2) |
||||||
---|---|---|---|---|---|---|---|
Type of Probe | Probe 1 | Hits | Score Max. | Score Min. | Hits | Score Max. | Score Min. |
UshA-like | P07024 | 120 | 235 | 151 | 521 | 1099 | 151 |
P44569 | 77 | 328 | 151 | 395 | 1188 | 151 | |
WP_000726911 | 147 | 904 | 151 | 324 | 247 | 151 | |
WP_011837008 | 94 | 1297 | 151 | 19 | 213 | 151 | |
O32133 | 366 | 947 | 171 | 0 (4) * | (416) * | (175) * | |
CpdB-like | P08331 | 288 | 686 | 151 | 813 | 1301 | 152 |
AYV64543 | 161 | 1579 | 162 | 581 | 607 | 153 |
1 The probes are shown in the same background color as
Specicity of probe O32133 for class Bacilli. Comparison between results obtained by querying type-material genomes of the class Bacilli and of the phylum Bacillota excluding Bacilli.
Class Bacilli (Taxid:91061) |
Phylum Bacillota (Taxid:1239) |
||||||
---|---|---|---|---|---|---|---|
Type of Probe | Probe 1 | Hits | Score Max. | Score Min. | Hits | Score Max. | Score Min. |
UshA-like | P07024 | 90 | 235 | 151 | 30 | 230 | 151 |
P44569 | 75 | 323 | 151 | 2 | 328 | 153 | |
WP_000726911 | 135 | 904 | 181 | 12 | 212 | 151 | |
WP_011837008 | 83 | 1297 | 151 | 62 | 439 | 154 | |
O32133 | 363 | 947 | 173 | 3 | 199 | 171 | |
CpdB-like | P08331 | 231 | 686 | 151 | 57 | 521 | 152 |
AYV64543 | 132 | 1579 | 162 | 54 | 509 | 156 |
1 The probes are shown in the same background color as
E. coli complete genomes lacking either an ushA-like or a cpdB-like gene. These genomes represent a minor fraction (0.5%) of the total number of E. coli genomes in the NCBI Complete Genomes Database.
Accession | Description | ushA-like Score Max. | cpdB-like Score Max. |
---|---|---|---|
NZ_AP023205.1 | Escherichia coli strain TUM18781 chromosome, complete genome | 1100 | 88 |
NZ_CP128950.1 | Escherichia coli strain TUM2805 chromosome, complete genome | 1100 | 86 |
CP054239.1 | Escherichia coli strain STO_Bone7 chromosome, complete genome | 769 | 73 |
CP061232.1 | Escherichia coli strain STEC639 chromosome, complete genome | 678 | 71 |
AP027461.1 | Escherichia coli str. K-12 substr. MG1655 D41c DNA, complete genome | 87 | 1308 |
AP027460.1 | Escherichia coli str. K-12 substr. MG1655 D37c16 DNA, complete genome | 87 | 1308 |
AP027459.1 | Escherichia coli str. K-12 substr. MG1655 D37c146 DNA, complete genome | 87 | 1308 |
AP027458.1 | Escherichia coli str. K-12 substr. MG1655 D37c145 DNA, complete genome | 87 | 1308 |
AP027457.1 | Escherichia coli str. K-12 substr. MG1655 D37c143 DNA, complete genome | 87 | 1308 |
AP027456.1 | Escherichia coli str. K-12 substr. MG1655 D37c13 DNA, complete genome | 87 | 1308 |
AP027455.1 | Escherichia coli str. K-12 substr. MG1655 D37b DNA, complete genome | 87 | 1308 |
AP027454.1 | Escherichia coli str. K-12 substr. MG1655 D33b DNA, complete genome | 87 | 1308 |
AP027453.1 | Escherichia coli str. K-12 substr. MG1655 D33a DNA, complete genome | 87 | 1308 |
NC_011750.1 | Escherichia coli IAI39, complete sequence | 118 | 1307 |
CP042982.1 | Escherichia coli strain NCCP 14540 chromosome, complete genome | 88 | 1306 |
CP061269.1 | Escherichia coli strain STEC1012 chromosome, complete genome | 87 | 1305 |
CP099173.1 | Escherichia coli strain RHB23-SO-C02 chromosome, complete genome | 87 | 1303 |
NZ_AP027411.1 | Escherichia coli strain EC521 isolate EC521 chromosome, complete genome | 87 | 1300 |
Avian pathogenic E. coli complete genomes containing an ushA and a cpdB gene, respectively, were found with probes P07024 and P08331.
Accession | Description | ushA-like Score Max. | cpdB-like Score Max. |
---|---|---|---|
NC_020163.1 | Escherichia coli APEC O78, complete sequence | 1102 | 1306 |
NZ_CP006834.2 | Escherichia coli APEC O2-211 chromosome, complete genome | 1098 | 1308 |
NZ_CP006830.1 | Escherichia coli APEC O18 chromosome, complete genome | 1097 | 1308 |
NZ_008563.1 | Escherichia coli APEC O1, complete sequence | 1097 | 1308 |
NZ_CP005930.1 | Escherichia coli APEC IMT5155 chromosome, complete genome | 592 | 1308 |
P. multocida complete genomes lacking either an ushA-like or a cpdB-like gene. These genomes represent a minor fraction (3.6%) of the total number of P. multocida genomes in the NCBI Complete Genomes Database.
Accession | Description | ushA-like Score Max. | cpdB-like Score Max. |
---|---|---|---|
CP090521.1 | Pasteurella multocida strain AH09 chromosome, complete genome | 628 | 98 |
NZ_CP038871.1 | Pasteurella multocida strain FCf15 chromosome, complete genome | 151 * | 847 |
NZ_CP084165.1 | Pasteurella multocida strain s4 chromosome, complete genome | 67 | 851 |
NZ_CP020345.1 | Pasteurella multocida subsp. multocida strain CIRMBP-0884 |
67 | 851 |
NZ_CP113522.1 | Pasteurella multocida strain PF13 chromosome, complete genome | 67 | 851 |
* This score is the minimum required to compute the hit as an ushA-like gene. It is mentioned here because it is much lower than the immediately higher ushA-like score for this species (625; data for line 66 of
Supplementary Materials
The following supporting information can be downloaded at:
References
1. Liu, J.; Burns, D.M.; Beacham, I.R. Isolation and sequence analysis of the gene (cpdB) encoding periplasmic 2′,3′-cyclic phosphodiesterase. J. Bacteriol.; 1986; 165, pp. 1002-1010. [DOI: https://dx.doi.org/10.1128/jb.165.3.1002-1010.1986] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3005231]
2. Burns, D.M.; Beacham, I.R. Nucleotide sequence and transcriptional analysis of the E. coli ushA gene, encoding periplasmic UDP-sugar hydrolase (5′-nucleotidase): Regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res.; 1986; 14, pp. 4325-4342. [DOI: https://dx.doi.org/10.1093/nar/14.10.4325] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3012467]
3. Covington, E.D.; Gelbmann, C.B.; Kotloski, N.J.; Gralnick, J.A. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol. Microbiol.; 2010; 78, pp. 519-532. [DOI: https://dx.doi.org/10.1111/j.1365-2958.2010.07353.x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20807196]
4. Lee, K.S.; Song, S.B.; Kim, K.E.; Kim, Y.H.; Kim, S.K.; Kho, B.H.; Ko, D.K.; Choi, Y.K.; Lee, Y.K.; Kim, C.K. et al. Cloning and characterization of the UDP-sugar hydrolase gene (ushA) of Enterobacter aerogenes IFO 12010. Biochem. Biophys. Res. Commun.; 2000; 269, pp. 526-531. [DOI: https://dx.doi.org/10.1006/bbrc.2000.2328]
5. Rittmann, D.; Sorger-Herrmann, U.; Wendisch, V.F. Phosphate starvation-inducible gene ushA encodes a 5′ nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Appl. Environ. Microbiol.; 2005; 71, pp. 4339-4344. [DOI: https://dx.doi.org/10.1128/AEM.71.8.4339-4344.2005]
6. Beacham, I.R.; Wilson, M.S. Studies on the UDP-sugar hydrolases from Escherichia coli and Salmonella typhimurium. Arch. Biochem. Biophys.; 1982; 218, pp. 603-608. [DOI: https://dx.doi.org/10.1016/0003-9861(82)90385-X]
7. Trülzsch, K.; Roggenkamp, A.; Pelludat, C.; Rakin, A.; Jacobi, C.; Heesemann, J. Cloning and characterization of the gene encoding periplasmic 2′,3′-cyclic phosphodiesterase of Yersinia enterocolitica O:8. Microbiology; 2001; 147, pp. 203-213. [DOI: https://dx.doi.org/10.1099/00221287-147-1-203]
8. McDonough, E.; Kamp, H.; Camilli, A. Vibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources. Mol. Microbiol.; 2016; 99, pp. 453-469. [DOI: https://dx.doi.org/10.1111/mmi.13128]
9. Center, M.S.; Behal, F.J. A cyclic phosphodiesterase with 3′-nucleotidase activity from Proteus mirabilis. J. Biol. Chem.; 1968; 243, pp. 138-143. [DOI: https://dx.doi.org/10.1016/S0021-9258(18)99334-8]
10. Rodden, J.L.; Scocca, J.J. Purification and properties of cyclic phosphodiesterase: 3′-nucleotidase, a periplasmic enzyme of Haemophilus influenzae. Arch. Biochem. Biophys.; 1972; 153, pp. 837-844. [DOI: https://dx.doi.org/10.1016/0003-9861(72)90406-7]
11. Ruiz, A.; Hurtado, C.; Meireles Ribeiro, J.; Sillero, A.; Günther Sillero, M.A. Hydrolysis of bis(5′-nucleosidyl) polyphosphates by Escherichia coli 5′-nucleotidase. J. Bacteriol.; 1989; 171, pp. 6703-6709. [DOI: https://dx.doi.org/10.1128/jb.171.12.6703-6709.1989] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2556371]
12. Alves-Pereira, I.; Canales, J.; Cabezas, A.; Cordero, P.M.; Costas, M.J.; Cameselle, J.C. CDP-alcohol hydrolase, a very efficient activity of the 5′-nucleotidase/UDP-sugar hydrolase encoded by the ushA gene of Yersinia intermedia and Escherichia coli. J. Bacteriol.; 2008; 190, pp. 6153-6161. [DOI: https://dx.doi.org/10.1128/JB.00658-08] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18641143]
13. Neu, H.C. The 5′-nucleotidase of Escherichia coli. I. Purification and properties. J. Biol. Chem.; 1967; 242, pp. 3896-3904. [DOI: https://dx.doi.org/10.1016/S0021-9258(18)95832-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/5341265]
14. López-Villamizar, I.; Cabezas, A.; Pinto, R.M.; Canales, J.; Ribeiro, J.M.; Cameselle, J.C.; Costas, M.J. The characterization of Escherichia coli CpdB as a recombinant protein reveals that, besides having the expected 3′-nucleotidase and 2′,3′-cyclic mononucleotide phosphodiesterase activities, it is also active as cyclic dinucleotide phosphodiesterase. PLoS ONE; 2016; 11, e0157308. [DOI: https://dx.doi.org/10.1371/journal.pone.0157308] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27294396]
15. Anraku, Y. A new cyclic phosphodiesterase having a 3′-nucleotidase activity from Escherichia coli B. I. Purification and some properties of the enzyme. J. Biol. Chem.; 1964; 239, pp. 3412-3419. [DOI: https://dx.doi.org/10.1016/S0021-9258(18)97738-0] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14245396]
16. Krug, U.; Patzschke, R.; Zebisch, M.; Balbach, J.; Sträter, N. Contribution of the two domains of E. coli 5′-nucleotidase to substrate specificity and catalysis. FEBS Lett.; 2013; 5793, 010. [DOI: https://dx.doi.org/10.1016/j.febslet.2013.01.010]
17. López-Villamizar, I.; Cabezas, A.; Pinto, R.M.; Canales, J.; Ribeiro, J.M.; Rodrigues, J.R.; Costas, M.J.; Cameselle, J.C. Molecular dissection of Escherichia coli CpdB: Roles of the N domain in catalysis and phosphate inhibition, and of the C domain in substrate specificity and adenosine inhibition. Int. J. Mol. Sci.; 2021; 22, 1977. [DOI: https://dx.doi.org/10.3390/ijms22041977]
18. Knöfel, T.; Sträter, N. X-ray structure of the Escherichia coli periplasmic 5′-nucleotidase containing a dimetal catalytic site. Nat. Struct. Biol.; 1999; 6, pp. 448-453. [DOI: https://dx.doi.org/10.1038/8253]
19. Knöfel, T.; Sträter, N.E. coli 5′-nucleotidase undergoes a hinge-bending domain rotation resembling a ball-and-socket motion. J. Mol. Biol.; 2001; 309, pp. 255-266. [DOI: https://dx.doi.org/10.1006/jmbi.2001.4657]
20. Schultz-Heienbrok, R.; Maier, T.; Sträter, N. A large hinge bending domain rotation is necessary for the catalytic function of Escherichia coli 5′-nucleotidase. Biochemistry; 2005; 44, pp. 2244-2252. [DOI: https://dx.doi.org/10.1021/bi047989c]
21. Thammavongsa, V.; Schneewind, O.; Missiakas, D.M. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochem.; 2011; 12, 56. [DOI: https://dx.doi.org/10.1186/1471-2091-12-56] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22035583]
22. Fan, J.; Zhang, Y.; Chuang-Smith, O.N.; Frank, K.L.; Guenther, B.D.; Kern, M.; Schlievert, P.M.; Herzberg, M.C. Ecto-5′-nucleotidase: A candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS ONE; 2012; 7, e38059. [DOI: https://dx.doi.org/10.1371/journal.pone.0038059] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22685551]
23. Firon, A.; Dinis, M.; Raynal, B.; Poyart, C.; Trieu-Cuot, P.; Kaminski, P.A. Extracellular nucleotide catabolism by the Group B Streptococcus ectonucleotidase NudP increases bacterial survival in blood. J. Biol. Chem.; 2014; 289, pp. 5479-5489. [DOI: https://dx.doi.org/10.1074/jbc.M113.545632]
24. Zheng, L.; Khemlani, A.; Lorenz, N.; Loh, J.M.; Langley, R.J.; Proft, T. Streptococcal 5′-Nucleotidase A (S5nA), a Novel Streptococcus pyogenes Virulence Factor That Facilitates Immune Evasion. J. Biol. Chem.; 2015; 290, pp. 31126-31137. [DOI: https://dx.doi.org/10.1074/jbc.M115.677443] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26527680]
25. Liu, P.; Pian, Y.; Li, X.; Liu, R.; Xie, W.; Zhang, C.; Zheng, Y.; Jiang, Y.; Yuan, Y. Streptococcus suis adenosine synthase functions as an effector in evasion of PMN-mediated innate immunity. J. Infect. Dis.; 2014; 210, pp. 35-45. [DOI: https://dx.doi.org/10.1093/infdis/jiu050] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24446521]
26. Andrade, W.A.; Firon, A.; Schmidt, T.; Hornung, V.; Fitzgerald, K.A.; Kurt-Jones, E.A.; Trieu-Cuot, P.; Golenbock, D.T.; Kaminski, P.A. Group B Streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe; 2016; 20, pp. 49-59. [DOI: https://dx.doi.org/10.1016/j.chom.2016.06.003]
27. Cabezas, A.; Costas, M.J.; Canales, J.; Pinto, R.M.; Rodrigues, J.R.; Ribeiro, J.M.; Cameselle, J.C. Enzyme characterization of pro-virulent SntA, a cell wall-anchored protein of Streptococcus suis, with phosphodiesterase activity on cyclic-di-AMP at a level suited to limit the innate immune system. Front. Microbiol.; 2022; 13, 843068. [DOI: https://dx.doi.org/10.3389/fmicb.2022.843068]
28. Wan, Y.; Zhang, S.; Li, L.; Chen, H.; Zhou, R. Characterization of a novel streptococcal heme-binding protein SntA and its interaction with host antioxidant protein AOP2. Microb. Pathog.; 2017; 111, pp. 145-155. [DOI: https://dx.doi.org/10.1016/j.micpath.2017.08.018]
29. Malik, A.; Shoombuatong, W.; Kim, C.B.; Manavalan, B. GPApred: The first computational predictor for identifying proteins with LPXTG-like motif using sequence-based optimal features. Int. J. Biol. Macromol.; 2023; 229, pp. 529-538. [DOI: https://dx.doi.org/10.1016/j.ijbiomac.2022.12.315]
30. Liu, H.; Chen, L.; Si, W.; Wang, C.; Zhu, F.; Li, G.; Liu, S. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli. Res. Vet. Sci.; 2017; 111, pp. 21-25. [DOI: https://dx.doi.org/10.1016/j.rvsc.2016.11.010]
31. Liu, H.; Chen, L.; Wang, X.; Si, W.; Wang, H.; Wang, C.; Liu, S.; Li, G. Decrease of colonization in the chicks’ cecum and internal organs of Salmonella enterica serovar Pullorum by deletion of cpdB by Red system. Microb. Pathog.; 2015; 80, pp. 21-26. [DOI: https://dx.doi.org/10.1016/j.micpath.2015.01.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25576890]
32. Ribeiro, J.M.; Canales, J.; Costas, M.J.; Cabezas, A.; Pinto, R.M.; García-Díaz, M.; Martín-Cordero, P.; Cameselle, J.C. Genomic Distribution of Pro-Virulent cpdB-like Genes in Eubacteria and Comparison of the Enzyme Specificity of CpdB-like Proteins from Salmonella enterica, Escherichia coli and Streptococcus suis. Int. J. Mol. Sci.; 2023; 24, 4150. [DOI: https://dx.doi.org/10.3390/ijms24044150] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/36835561]
33. Gertz, E.M.; Yu, Y.K.; Agarwala, R.; Schaffer, A.A.; Altschul, S.F. Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST. BMC Biol.; 2006; 4, 41. [DOI: https://dx.doi.org/10.1186/1741-7007-4-41] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17156431]
34. Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res.; 1997; 25, pp. 3389-3402. [DOI: https://dx.doi.org/10.1093/nar/25.17.3389]
35. Federhen, S. Type material in the NCBI Taxonomy Database. Nucleic Acids Res.; 2015; 43, pp. D1086-D1098. [DOI: https://dx.doi.org/10.1093/nar/gku1127]
36. Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O’Neill, K.; Robbertse, B. et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database; 2020; 2020, baaa062. [DOI: https://dx.doi.org/10.1093/database/baaa062]
37. Zakataeva, N.P. Microbial 5′-nucleotidases: Their characteristics, roles in cellular metabolism, and possible practical applications. Appl. Microbiol. Biotechnol.; 2021; 105, pp. 7661-7681. [DOI: https://dx.doi.org/10.1007/s00253-021-11547-w]
38. UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res.; 2023; 51, pp. D523-D531. [DOI: https://dx.doi.org/10.1093/nar/gkac1052]
39. Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol.; 2021; 71, 005056. [DOI: https://dx.doi.org/10.1099/ijsem.0.005056]
40. Yamamoto, H.; Uchiyama, S.; Sekiguchi, J. Cloning and sequencing of a 40.6 kb segment in the 73 degrees-76 degrees region of the Bacillus subtilis chromosome containing genes for trehalose metabolism and acetoin utilization. Microbiology; 1996; 142, pp. 3057-3065. [DOI: https://dx.doi.org/10.1099/13500872-142-11-3057]
41. Chambert, R.; Pereira, Y.; Petit-Glatron, M.F. Purification and characterization of YfkN, a trifunctional nucleotide phosphoesterase secreted by Bacillus subtilis. J. Biochem.; 2003; 134, pp. 655-660. [DOI: https://dx.doi.org/10.1093/jb/mvg189] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14688230]
42. Burns, D.M.; Beacham, I.R. Identification and sequence analysis of a silent gene (ushA0) in Salmonella typhimurium. J. Mol. Biol.; 1986; 192, pp. 163-175. [DOI: https://dx.doi.org/10.1016/0022-2836(86)90358-X] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3031310]
43. Edwards, C.J.; Innes, D.J.; Burns, D.M.; Beacham, I.R. UDP-sugar hydrolase isozymes in Salmonella enterica and Escherichia coli: Silent alleles of ushA in related strains of group I Salmonella isolates, and of ushB in wild-type and K12 strains of E. coli, indicate recent and early silencing events, respectively. FEMS Microbiol. Lett.; 1993; 114, pp. 293-298.
44. Innes, D.; Beacham, I.R.; Beven, C.A.; Douglas, M.; Laird, M.W.; Joly, J.C.; Burns, D.M. The cryptic ushA gene (ushA(c)) in natural isolates of Salmonella enterica (serotype Typhimurium) has been inactivated by a single missense mutation. Microbiology; 2001; 147, pp. 1887-1896. [DOI: https://dx.doi.org/10.1099/00221287-147-7-1887] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11429465]
45. Cherry, J.L. Selection-Driven Gene Inactivation in Salmonella. Genome. Biol. Evol.; 2020; 12, pp. 18-34. [DOI: https://dx.doi.org/10.1093/gbe/evaa010] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32044996]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
UshA and CpdB are nucleotidases of the periplasm of several Gram-negative bacteria, while several Gram-positives contain cell wall-bound variants. UshA is a 5′-nucleotidase, a UDP-sugar hydrolase, and a CDP-alcohol hydrolase. CpdB acts as a 3′-nucleotidase and as a phosphodiesterase of 2′,3′-cyclic nucleotides and 3′,5′-linear and cyclic dinucleotides. Both proteins are pro-virulent for the pathogens producing them and facilitate escape from the innate immunity of the infected host. Recently, the genomic distribution of cpdB-like genes in Bacteria was found to be non-homogeneous among different taxa, and differences occur within single taxa, even at species level. Similitudes and differences between UshA-like and CpdB-like proteins prompted parallel analysis of their genomic distributions in Bacteria. The presence of ushA-like and cpdB-like genes was tested by TBlastN analysis using seven protein probes to query the NCBI Complete Genomes Database. It is concluded that the distribution of ushA-like genes, like that of cpdB-like genes, is non-homogeneous. There is a partial correlation between both gene kinds: in some taxa, both are present or absent, while in others, only one is present. The result is an extensive catalog of the genomic distribution of these genes at different levels, from phylum to species, constituting a starting point for research using other in silico or experimental approaches.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer