Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Moving on paths or trails present in natural environments makes autonomous navigation of unmanned ground vehicles (UGV) simpler and safer. In this sense, aerial photographs provide a lot of information of wide areas that can be employed to detect paths for UGV usage. This paper proposes the extraction of paths from a geo-referenced satellite image centered at the current UGV position. Its pixels are individually classified as being part of a path or not using a convolutional neural network (CNN) which has been trained using synthetic data. Then, successive distant waypoints inside the detected paths are generated to achieve a given goal. This processing has been successfully tested on the Andabata mobile robot, which follows the list of waypoints in a reactive way based on a three-dimensional (3D) light detection and ranging (LiDAR) sensor.

Details

Title
Waypoint Generation in Satellite Images Based on a CNN for Outdoor UGV Navigation
Author
Sánchez, Manuel  VIAFID ORCID Logo  ; Morales, Jesús  VIAFID ORCID Logo  ; Martínez, Jorge L  VIAFID ORCID Logo 
First page
807
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857109731
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.