It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The performance of a material structure can be affected due to corrosion damage. Corrosion is a decrease in metal quality caused by electrochemical reactions between metals and their surrounding environment. One of the causes of corrosion is microalgae or called biocorrosion. Corrosion can cause failure of the pipe structure which causes the pipe to not operate properly. The purpose of the research was to determine the corrosion rate of ASTM A53 steel material with full annealing heat treatment and without heat treatment. Second research aim was to determine the biocorrosion with added of microalgae and without the addition of microalgae. Heat treatment and non-heat treatment materials were testing using the immersion corrosion test method, which was soaked in artificial seawater with a salinity of 35‰. Based on the results, the highest biocorrosion rate on non-heat treated materials with the addition of Chrorella vulgaris reached 0.2780 mpy. While the biocorrosion rate after full annealing treatment was 0.1434 mpy and the size of uniform corrosion and pitting decreased. The percentages reduction of biocorrosion rete was 46.58%. This indicates that the addition of Chlorella vulgaris can accelerate the corrosion rate and full annealing can inhibit the biocorrosion rate.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Ocean Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember , Keputih, Sukolilo, 60111 Surabaya , Indonesia
2 Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember , Keputih, Sukolilo, 60111 Surabaya , Indonesia