Abstract

The performance of a material structure can be affected due to corrosion damage. Corrosion is a decrease in metal quality caused by electrochemical reactions between metals and their surrounding environment. One of the causes of corrosion is microalgae or called biocorrosion. Corrosion can cause failure of the pipe structure which causes the pipe to not operate properly. The purpose of the research was to determine the corrosion rate of ASTM A53 steel material with full annealing heat treatment and without heat treatment. Second research aim was to determine the biocorrosion with added of microalgae and without the addition of microalgae. Heat treatment and non-heat treatment materials were testing using the immersion corrosion test method, which was soaked in artificial seawater with a salinity of 35‰. Based on the results, the highest biocorrosion rate on non-heat treated materials with the addition of Chrorella vulgaris reached 0.2780 mpy. While the biocorrosion rate after full annealing treatment was 0.1434 mpy and the size of uniform corrosion and pitting decreased. The percentages reduction of biocorrosion rete was 46.58%. This indicates that the addition of Chlorella vulgaris can accelerate the corrosion rate and full annealing can inhibit the biocorrosion rate.

Details

Title
Improvement of biocorrosion resistance on steel using full annealing heat treatment
Author
Pratikno, H 1 ; Titah, H S 2 

 Department of Ocean Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember , Keputih, Sukolilo, 60111 Surabaya , Indonesia 
 Department of Environmental Engineering, Faculty of Civil, Planning and Geo Engineering, Institut Teknologi Sepuluh Nopember , Keputih, Sukolilo, 60111 Surabaya , Indonesia 
First page
012017
Publication year
2023
Publication date
Aug 2023
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857141530
Copyright
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.