Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The stochastic nature of tool wear during wood machining, owing to the dynamic properties of the biological material and its dependence on various factors, has raised significant industrial and research concerns in recent years. Explicitly, the tool wear is a product of the interaction between wood properties (such as hardness, density, and contamination level) and machining parameters (such as cutting speed, feed rate, and rake angle) alongside ambient conditions (such as temperature and humidity). The objective of this review paper is to provide an overview of recent advancements in the field of wood machining. To begin with, it highlights the important role of wood properties and ambient conditions influencing tool wear. Furthermore, the paper examines the various mechanisms involved in the wood-machining process and discusses their cost implications from an industrial perspective. It also covers technological advancements in the characterization of tool wear and explores the relationship between this parameter and other machining variables. It provides critical and analytical discussions on various methods for enhancing tool wear, including heat treatment, cryogenic treatment, thermochemical treatment, coating deposition, and hybrid treatments. Additionally, the paper incorporates statistical analysis to achieve two objectives. Firstly, it aims to identify the most significant wood property that affects tool wear and establish the correlation between this parameter and wood properties. Secondly, it investigates the effect of heat treatment parameters and carbide characteristics on tool wear as well as their correlation. Lastly, the review provides recommendations based on relevant literature for prospective researchers and industrial counterparts in the field. These recommendations aim to guide further exploration and practical applications in the subject matter.

Details

Title
Enhancing the Tribological Performance of Tool Steels for Wood-Processing Applications: A Comprehensive Review
Author
Musa Muhammed 1   VIAFID ORCID Logo  ; Mousa Javidani 1 ; Heidari, Majid 2 ; Jahazi, Mohammad 3   VIAFID ORCID Logo 

 Department of Applied Science, University of Quebec at Chicoutimi, Saguenay, QC G7H 2B1, Canada; [email protected] 
 DK SPEC Company, 1060, Chemin Olivier, St-Nicolas, Lévis, QC G7A 2M8, Canada 
 Department of Mechanical Engineering, École de Technologie Superieure (ETS), Montreal, QC H3C 1K3, Canada 
First page
1460
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857403037
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.