Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, aluminum alloy has been increasingly used in building structures, becoming an important construction material for metal structures. Currently, aluminum alloy is commonly used in buildings as beam–column components, profiled roof panels, and door and window frames, among other forms. However, there is limited research on the mechanical properties of aluminum alloy roof panels with irregular curved surfaces. In this study, a full-scale curved double-layer anisotropic riveted aluminum alloy roof panel was subjected to a load test to analyze its deformation patterns and failure mechanisms. The results indicate that the load-bearing capacity of the roof panel meets the design requirements. During failure, neither the upper nor lower layers of the panel enter the plastic deformation stage, indicating sufficient safety redundancy. The failure mode observed is a ductile failure with noticeable deformation with the weak points of the component being the riveted connections of the stiffeners. A finite element model was established for numerical simulation and the results matched well with the experimental data. Finally, a theoretical calculation for the ultimate load-bearing capacity of the roof panel was derived, providing a reference for design purposes.

Details

Title
Mechanical Properties of Double-Layer Riveted Aluminum Roofing Panels with Curved Surfaces
Author
Ye Yuan 1   VIAFID ORCID Logo  ; Zhang, Qilin 1 ; Luo, Xiaoqun 1 ; Lin, Yuan 1 ; Zhang, Shaoquan 2 ; Ge, Hanbin 2 

 College of Civil Engineering, Tongji University, Shanghai 200092, China; [email protected] (Y.Y.); [email protected] (X.L.); [email protected] (L.Y.) 
 Department of Civil Engineering, Meijo University, Nagoya 4688502, Japan; [email protected] (S.Z.); [email protected] (H.G.) 
First page
1452
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857403284
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.