Full text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The process of electrospinning is subject to a variety of input parameters ranging from the characterization of polymers and solvents, the resulting solutions, the geometrical configuration of the device, including its process parameters, and ending with crucial parameters such as temperature and humidity. It is not possible to expect that functional expressions relating all these parameters can be derived in a common description. Nevertheless, it is possible to fix the majority of these parameters to derive explicit relations for a restricted number of entry parameters such that it contributes to the partial elimination of the classical trial-and-error method saving time and financial costs. However, several contributions providing such results are rather moderate. Special attention is provided to fibre diameter approximation as this parameter strongly influences the application of nanofibrous mats in various instances such as air filtration, tissue engineering, and drug delivery systems. Various difficulties connected with the derivation of these explicit relations are presented and discussed in detail.

Details

Title
Explicit Expressions for a Mean Nanofibre Diameter Using Input Parameters in the Process of Electrospinning
Author
Filip, Petr  VIAFID ORCID Logo 
First page
3371
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857428671
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.