Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The implementation of precise agricultural fields can drive the intelligent development of agricultural production, and high-resolution remote sensing images provide convenience for obtaining precise fields. With the advancement of spatial resolution, the complexity and heterogeneity of land features are accentuated, making it challenging for existing methods to obtain structurally complete fields, especially in regions with blurred edges. Therefore, a multi-task learning network with attention-guided mechanism is introduced for segmenting agricultural fields. To be more specific, the attention-guided fusion module is used to learn complementary information layer by layer, while the multi-task learning scheme considers both edge detection and semantic segmentation task. Based on this, we further segmented the merged fields using broken edges, following the theory of connectivity perception. Finally, we chose three cities in The Netherlands as study areas for experimentation, and evaluated the extracted field regions and edges separately, the results showed that (1) The proposed method achieved the highest accuracy in three cities, with IoU of 91.27%, 93.05% and 89.76%, respectively. (2) The Qua metrics of the processed edges demonstrated improvements of 6%, 6%, and 5%, respectively. This work successfully segmented potential fields with blurred edges, indicating its potential for precision agriculture development.

Details

Title
MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields
Author
Luo, Weiran 1 ; Zhang, Chengcai 1 ; Li, Ying 2   VIAFID ORCID Logo  ; Yan, Yaning 1 

 School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China 
 Henan Institute of Meteorological Sciences, Zhengzhou 450003, China; CMA·Henan Agrometeorological Support and Applied Technique Key Laboratory, Zhengzhou 450003, China 
First page
3934
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857441813
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.