It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Few comparative studies have assessed metabolic brain changes in cognitive impairment among neurodegenerative disorders, and the posterior cingulate cortex (PCC) is a metabolically active brain region with high involvement in multiple cognitive processes. Therefore, in this study, metabolic abnormalities of the PCC were compared in patients with mild cognitive impairment (MCI) due to Parkinson’s disease (PD) or Alzheimer’s disease (AD), as examined by proton magnetic resonance spectroscopy (1H-MRS). Thirty-eight patients with idiopathic PD, including 20 with mild cognitive impairment (PDMCI) and 18 with normal cognitive function (PDN), 18 patients with probable mild cognitive impairment (ADMCI), and 25 healthy elderly controls (HCs) were recruited and underwent PCC 1H-MRS scans. Compared with HCs, patients with PDMCI exhibited significantly reduced concentrations of N-acetyl aspartate (NAA), total NAA (tNAA), choline (Cho), glutathione (GSH), glutamate + glutamine (Glx) and total creatine (tCr), while ADMCI cases exhibited significantly elevated levels of myo-inositol (Ins) and Ins/tCr ratio, as well as reduced NAA/Ins ratio. No significant metabolic changes were detected in PDN subjects. Compared with ADMCI, reduced NAA, Ins and tCr concentrations were detected in PDMCI. Besides, ROC curve analysis revealed that tCr concentration could differentiate PDMCI from PDN with an AUC of 0.71, and NAA/Ins ratio could differentiate patients with MCI from controls with normal cognitive function with an AUC of 0.74. Patients with PDMCI and ADMCI exhibited distinct PCC metabolic 1H-MRS profiles. The findings suggested cognitively normal PD patients with low NAA and tCr in the PCC might be at risk of preclinical PDMCI, and Ins and/or NAA/MI ratio in the PCC should be reconsidered a possible biomarker of preclinical MCI in clinical practice. So, comparing PCC’s 1H-MRS profiles of cognitive impairment among neurodegenerative illnesses may provide useful information for better defining the disease process and elucidate possible treatment mechanisms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Affiliated Hospital of Guizhou Medical University, Department of Radiology, Guiyang, China (GRID:grid.452244.1)
2 The Seventh Affiliated Hospital, Southern Medical University, General Practice Center and Department of Radiology, Foshan, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471)