Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microscopic and mesoscale optical imaging techniques allow for three-dimensional (3-D) imaging of biological tissue across millimeter-scale regions, and imaging phantom models are invaluable for system characterization and clinical training. Phantom models that replicate complex 3-D geometries with both structural and molecular contrast, with resolution and lateral dimensions equivalent to those of imaging techniques (<20  μm), have proven elusive. We present a method for fabricating phantom models using a combination of two-photon polymerization (2PP) to print scaffolds, and microinjection of tailored tissue-mimicking materials to simulate healthy and diseased tissue. We provide a first demonstration of the capabilities of this method with intravascular optical coherence tomography, an imaging technique widely used in clinical practice. We describe the design, fabrication, and validation of three types of phantom models: a first with subresolution wires (5- to 34-μm diameter) arranged circumferentially, a second with a vessel side-branch, and a third containing a lipid inclusion within a vessel. Silicone hybrid materials and lipids, microinjected within a resin framework created with 2PP, served as tissue-mimicking materials that provided realistic optical scattering and absorption. We demonstrate that optical phantom models made with 2PP and microinjected tissue-mimicking materials can simulate complex anatomy and pathology with exquisite detail.

Details

Title
Micron resolution, high-fidelity three-dimensional vascular optical imaging phantoms
Author
Little, Callum D; Poduval, Radhika K; Caulfield, Richard; Noimark, Sacha; Colchester, Richard J; Loder, Chris D; Tiwari, Manish K; Rakhit, Roby D; Papakonstantinou, Ioannis; Desjardins, Adrien E
First page
20502
Section
JBO Letters
Publication year
2019
Publication date
Feb 2019
Publisher
S P I E - International Society for
ISSN
1083-3668
e-ISSN
1560-2281
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2859559823
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.