Abstract

Sleep apnea syndrome is a common sleep disorder. Detection of apnea and differentiation of its type: obstructive (OSA), central (CSA) or mixed is important in the context of treatment methods, however, it typically requires a great deal of technical and human resources. The aim of this research was to propose a quasi-optimal procedure for processing single-channel electroencephalograms (EEG) from overnight recordings, maximizing the accuracy of automatic apnea or hypopnea detection, as well as distinguishing between the OSA and CSA types. The proposed methodology consisted in processing the EEG signals divided into epochs, with the selection of the best methods at the stages of preprocessing, extraction and selection of features, and classification. Normal breathing was unmistakably distinguished from apnea by the k-nearest neighbors (kNN) and an artificial neural network (ANN), and with 99.98% accuracy by the support vector machine (SVM). The average accuracy of multinomial classification was: 82.29%, 83.26%, and 82.25% for the kNN, SVM and ANN, respectively. The sensitivity and precision of OSA and CSA detection ranged from 55 to 66%, and the misclassification cases concerned only the apnea type.

Details

Title
Single-channel EEG processing for sleep apnea detection and differentiation
Author
Prucnal, Monika A; Polak, Adam G
Pages
323-336
Publication year
2023
Publication date
2023
Publisher
Polish Academy of Sciences
ISSN
20809050
e-ISSN
23001941
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2859958546
Copyright
© 2023. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.