It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Entanglement and correlation of quantum light can enhance LiDAR sensitivity in the presence of strong background noise. However, the power of such quantum sources is fundamentally limited to a stream of single photons and cannot compete with the detection range of high-power classical LiDAR transmitters. To circumvent this, we develop and demonstrate a quantum-inspired LiDAR prototype based on coherent measurement of classical time-frequency correlation. This system uses a high-power classical source and maintains the high noise rejection advantage of quantum LiDARs. In particular, we show that it can achieve over 100dB rejection (with 100ms integration time) of indistinguishable (with statistically identical properties in every degree of freedom) in-band noise while still being sensitive to single photon signals. In addition to the LiDAR demonstration, we also discuss the potential of the proposed LiDAR receiver for quantum information applications. In particular, we propose the chaotic quantum frequency conversion technique for coherent manipulation of high dimensional quantum states of light. It is shown that this technique can provide improved performance in terms of selectivity and efficiency as compared to pulse-based quantum frequency conversion.
LiDARs exploiting quantum correlations provide enhancement in noise resilience and sensitivity, but high-power classical sources offer much higher operating distances. Here, the authors show how to exploit high power classical time-frequency correlations to keep the best of both worlds.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer