Abstract

Motivated by the recent report of room-temperature superconductivity at near-ambient pressure in N-doped lutetium hydride, we performed a comprehensive, detailed study of the phase diagram of the Lu–N–H system, looking for superconducting phases. We combined ab initio crystal structure prediction with ephemeral data-derived interatomic potentials to sample over 200,000 different structures. Out of the more than 150 structures predicted to be metastable within ~50 meV from the convex hull we identify 52 viable candidates for conventional superconductivity, for which we computed their superconducting properties from Density Functional Perturbation Theory. Although for some of these structures we do predict a finite superconducting Tc, none is even remotely compatible with room-temperature superconductivity as reported by Dasenbrock et al. Our work joins the broader community effort that has followed the report of near-ambient superconductivity, confirming beyond reasonable doubt that no conventional mechanism can explain the reported Tc in Lu–N–H.

Superconductivity was recently reported experimentally in nitrogen-doped lutetium hydride with Tc = 294 K at a pressure of 1 GPa. Here, via theoretical calculations, the authors find no structures capable of supporting conventional superconductivity in the Lu-N-H system at ambient pressure.

Details

Title
Search for ambient superconductivity in the Lu-N-H system
Author
Ferreira, Pedro P. 1   VIAFID ORCID Logo  ; Conway, Lewis J. 2 ; Cucciari, Alessio 3 ; Di Cataldo, Simone 4 ; Giannessi, Federico 3 ; Kogler, Eva 5   VIAFID ORCID Logo  ; Eleno, Luiz T. F. 6   VIAFID ORCID Logo  ; Pickard, Chris J. 2   VIAFID ORCID Logo  ; Heil, Christoph 5   VIAFID ORCID Logo  ; Boeri, Lilia 3 

 Universidade de São Paulo, Escola de Engenharia de Lorena, DEMAR, Lorena, Brazil (GRID:grid.11899.38) (ISNI:0000 0004 1937 0722); Graz University of Technology, NAWI Graz, Institute of Theoretical and Computational Physics, Graz, Austria (GRID:grid.410413.3) (ISNI:0000 0001 2294 748X) 
 University of Cambridge, Department of Materials Science and Metallurgy, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934); Tohoku University, Advanced Institute for Materials Research, Sendai, Japan (GRID:grid.69566.3a) (ISNI:0000 0001 2248 6943) 
 Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy (GRID:grid.7841.a); Enrico Fermi Research Center, Rome, Italy (GRID:grid.7841.a) 
 Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy (GRID:grid.7841.a); Wien University of Technology, Institut für Festkörperphysik, Wien, Austria (GRID:grid.5329.d) (ISNI:0000 0004 1937 0669) 
 Graz University of Technology, NAWI Graz, Institute of Theoretical and Computational Physics, Graz, Austria (GRID:grid.410413.3) (ISNI:0000 0001 2294 748X) 
 Universidade de São Paulo, Escola de Engenharia de Lorena, DEMAR, Lorena, Brazil (GRID:grid.11899.38) (ISNI:0000 0004 1937 0722) 
Pages
5367
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2860455617
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.