Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a hybrid feature extraction convolutional neural network combined with a channel attention mechanism (HFECNET-CA) for automatic modulation recognition (AMR). Firstly, we designed a hybrid feature extraction backbone network. Three different forms of convolution kernels were used to extract features from the original I/Q sequence on three branches, respectively, learn the spatiotemporal features of the original signal from different “perspectives” through the convolution kernels with different shapes, and perform channel fusion on the output feature maps of the three branches to obtain a multi-domain mixed feature map. Then, the deep features of the signal are extracted by connecting multiple convolution layers in the time domain. Secondly, a plug-and-play channel attention module is constructed, which can be embedded into any feature extraction layer to give higher weight to the more valuable channels in the output feature map to achieve the purpose of feature correction for the output feature map. The experimental results on the RadiomL2016.10A dataset show that the designed HFECNET-CA has higher recognition accuracy and fewer trainable parameters compared to other networks. Under 20 SNRs, the average recognition accuracy reached 63.92%, and the highest recognition accuracy reached 93.64%.

Details

Title
An Efficient and Lightweight Model for Automatic Modulation Classification: A Hybrid Feature Extraction Network Combined with Attention Mechanism
Author
Zhao, Ma; Fang, Shengliang; Fan, Youchen; Li, Gaoxing; Hu, Haojie
First page
3661
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2862245450
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.