Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Steady growth in beer production is increasing the number of by-products named brewers’ spent grain. Such by-products are a source of several components, where cellulose is usually present in high amounts. The aim of this study was to develop a protocol to obtain a mix of cellulose microfibers with an average diameter of 8–12 µm and cellulose nanoplatelets with an average thickness of 100 nm, which has several applications in the food industry. The process comprised one alkaline treatment followed by acid hydrolysis, giving a new mix of micro and nanocellulose. This mix was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and laser scanning microscopy corroborating the presence and measurements of the cellulose nanostructure, showing an aspect ratio of up to 500. Finally, we demonstrated that the administration of this new type of nanocellulose allowed us to control the weight of mice (feed intake), showing a significant percentage of weight reduction (4.96%) after 15 days compared with their initial weight, indicating the possibility of using this material as a dietary fiber.

Details

Title
Potential of Nanocellulose as a Dietary Fiber Isolated from Brewer’s Spent Grain
Author
Abraham Azael Morales-Juárez 1 ; Terrazas Armendáriz, Luis Daniel 2 ; Alcocer-González, Juan Manuel 2   VIAFID ORCID Logo  ; Chávez-Guerrero, Leonardo 1   VIAFID ORCID Logo 

 Mechanical and Electrical Engineering School, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de los Garza, San Nicolas de los Garza C.P. 66455, Nuevo León, Mexico; [email protected] 
 Biological Sciences School, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; [email protected] (L.D.T.A.); [email protected] (J.M.A.-G.) 
First page
3613
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2862708603
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.