Abstract

Van der Waals dielectrics are fundamental materials for condensed matter physics and advanced electronic applications. Most dielectrics host isotropic structures in crystalline or amorphous forms, and only a few studies have considered the role of anisotropic crystal symmetry in dielectrics as a delicate way to tune electronic properties of channel materials. Here, we demonstrate a layered anisotropic dielectric, SiP2, with non-symmorphic twofold-rotational C2 symmetry as a gate medium which can break the original threefold-rotational C3 symmetry of MoS2 to achieve unexpected linearly-polarized photoluminescence and anisotropic second harmonic generation at SiP2/MoS2 interfaces. In contrast to the isotropic behavior of pristine MoS2, a large conductance anisotropy with an anisotropy index up to 1000 can be achieved and modulated in SiP2-gated MoS2 transistors. Theoretical calculations reveal that the anisotropic moiré potential at such interfaces is responsible for the giant anisotropic conductance and optical response. Our results provide a strategy for generating exotic functionalities at dielectric/semiconductor interfaces via symmetry engineering.

Here, the authors demonstrate that a layered anisotropic dielectric material, SiP2, can break the rotational symmetry of 2D MoS2, leading to linearly polarized photoluminescence emission and conductance anisotropy ratios up to 1000 in gated SiP2/MoS2 heterostructures.

Details

Title
An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces
Author
Li, Zeya 1   VIAFID ORCID Logo  ; Huang, Junwei 1   VIAFID ORCID Logo  ; Zhou, Ling 1   VIAFID ORCID Logo  ; Xu, Zian 2   VIAFID ORCID Logo  ; Qin, Feng 1   VIAFID ORCID Logo  ; Chen, Peng 1 ; Sun, Xiaojun 1 ; Liu, Gan 3 ; Sui, Chengqi 1 ; Qiu, Caiyu 1 ; Lu, Yangfan 4   VIAFID ORCID Logo  ; Gou, Huiyang 5   VIAFID ORCID Logo  ; Xi, Xiaoxiang 3   VIAFID ORCID Logo  ; Ideue, Toshiya 6   VIAFID ORCID Logo  ; Tang, Peizhe 7   VIAFID ORCID Logo  ; Iwasa, Yoshihiro 8   VIAFID ORCID Logo  ; Yuan, Hongtao 1   VIAFID ORCID Logo 

 Nanjing University, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X); Nanjing University, College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X) 
 School of Materials Science and Engineering, Beihang University, Beijing, China (GRID:grid.64939.31) (ISNI:0000 0000 9999 1211) 
 Nanjing University, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X); Nanjing University, School of Physics, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X) 
 Chongqing University, College of Materials Sciences and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing, China (GRID:grid.190737.b) (ISNI:0000 0001 0154 0904) 
 Center for High Pressure Science and Technology Advanced Research, Beijing, China (GRID:grid.503238.f) (ISNI:0000 0004 7423 8214) 
 The University of Tokyo, Quantum Phase Electronic Center and Department of Applied Physics, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X); The University of Tokyo, Institute for Solid State Physics, Chiba, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X) 
 School of Materials Science and Engineering, Beihang University, Beijing, China (GRID:grid.64939.31) (ISNI:0000 0000 9999 1211); Center for Free Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany (GRID:grid.466493.a) (ISNI:0000 0004 0390 1787) 
 The University of Tokyo, Quantum Phase Electronic Center and Department of Applied Physics, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X); RIKEN Center for Emergent Matter Science, Wako, Japan (GRID:grid.474689.0) 
Pages
5568
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2862854564
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.