Full text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.

Details

Title
3D Printing of Microenvironment-Specific Bioinspired and Exosome-Reinforced Hydrogel Scaffolds for Efficient Cartilage and Subchondral Bone Regeneration
Author
Li, Qi 1   VIAFID ORCID Logo  ; Yu, Huilei 2 ; Zhao, Fengyuan 2 ; Cao, Chenxi 2 ; Wu, Tong 2 ; Fan, Yifei 2 ; Ao, Yingfang 2   VIAFID ORCID Logo  ; Hu, Xiaoqing 2 

 Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China; Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China 
 Department of Sports Medicine, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China 
Section
Research Articles
Publication year
2023
Publication date
Sep 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2864819002
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.