It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The outer membrane (OM) of Gram-negative bacteria such as Escherichia coli is an asymmetric bilayer with the glycolipid lipopolysaccharide (LPS) in the outer leaflet and glycerophospholipids in the inner. Nearly all integral OM proteins (OMPs) have a characteristic β-barrel fold and are assembled in the OM by the BAM complex, which contains one essential β-barrel protein (BamA), one essential lipoprotein (BamD), and three non-essential lipoproteins (BamBCE). A gain-of-function mutation in bamA enables survival in the absence of BamD, showing that the essential function of this protein is regulatory. Here, we demonstrate that the global reduction in OMPs caused by BamD loss weakens the OM, altering cell shape and causing OM rupture in spent medium. To fill the void created by OMP loss, phospholipids (PLs) flip into the outer leaflet. Under these conditions, mechanisms that remove PLs from the outer leaflet create tension between the OM leaflets, which contributes to membrane rupture. Rupture is prevented by suppressor mutations that release the tension by halting PL removal from the outer leaflet. However, these suppressors do not restore OM stiffness or normal cell shape, revealing a possible connection between OM stiffness and cell shape.
The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer, with phospholipids in the inner leaflet. Here the authors show that a reduction in OM proteins and the subsequent mislocalization of phospholipids weaken the OM and alter growth rate and cell shape, emphasizing the role of OM proteins in OM stiffness and cell shape.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Princeton University, Department of Molecular Biology, Princeton, USA (GRID:grid.16750.35) (ISNI:0000 0001 2097 5006)
2 Stanford University, Department of Bioengineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000 0004 1936 8956)
3 Stanford University, Department of Bioengineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000 0004 1936 8956); Stanford University School of Medicine, Department of Microbiology and Immunology, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956); Chan Zuckerberg Biohub, San Francisco, USA (GRID:grid.499295.a) (ISNI:0000 0004 9234 0175)