Abstract

A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.

Understanding protein dynamics is a complex scientific challenge. Here, authors construct coarse-grained molecular potentials using artificial neural networks, significantly accelerating protein dynamics simulations while preserving their thermodynamics.

Details

Title
Machine learning coarse-grained potentials of protein thermodynamics
Author
Majewski, Maciej 1   VIAFID ORCID Logo  ; Pérez, Adrià 1   VIAFID ORCID Logo  ; Thölke, Philipp 2   VIAFID ORCID Logo  ; Doerr, Stefan 3 ; Charron, Nicholas E. 4 ; Giorgino, Toni 5   VIAFID ORCID Logo  ; Husic, Brooke E. 6 ; Clementi, Cecilia 7   VIAFID ORCID Logo  ; Noé, Frank 8   VIAFID ORCID Logo  ; De Fabritiis, Gianni 9   VIAFID ORCID Logo 

 Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Computational Science Laboratory, Barcelona, Spain (GRID:grid.5612.0) (ISNI:0000 0001 2172 2676); Acellera Labs, Barcelona, Spain (GRID:grid.5612.0) 
 Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Computational Science Laboratory, Barcelona, Spain (GRID:grid.5612.0) (ISNI:0000 0001 2172 2676) 
 Acellera Labs, Barcelona, Spain (GRID:grid.5612.0) 
 Rice University, Department of Physics, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278); Rice University, Center for Theoretical Biological Physics, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278); FU Berlin, Department of Physics, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836) 
 National Research Council (CNR-IBF), Biophysics Institute, Milan, Italy (GRID:grid.419463.d) (ISNI:0000 0004 1756 3731) 
 FU Berlin, Department of Mathematics and Computer Science, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836); Princeton University, Lewis Sigler Institute for Integrative Genomics, Princeton, USA (GRID:grid.16750.35) (ISNI:0000 0001 2097 5006); Princeton University, Princeton Center for Theoretical Science, Princeton, USA (GRID:grid.16750.35) (ISNI:0000 0001 2097 5006); Princeton University, Center for the Physics of Biological Function, Princeton, USA (GRID:grid.16750.35) (ISNI:0000 0001 2097 5006) 
 Rice University, Department of Physics, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278); Rice University, Center for Theoretical Biological Physics, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278); FU Berlin, Department of Physics, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836); Rice University, Department of Chemistry, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278) 
 FU Berlin, Department of Physics, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836); FU Berlin, Department of Mathematics and Computer Science, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836); Rice University, Department of Chemistry, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278); Microsoft Research AI4Science, Berlin, Germany (GRID:grid.21940.3e) 
 Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Computational Science Laboratory, Barcelona, Spain (GRID:grid.5612.0) (ISNI:0000 0001 2172 2676); Acellera Labs, Barcelona, Spain (GRID:grid.5612.0); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (GRID:grid.425902.8) (ISNI:0000 0000 9601 989X) 
Pages
5739
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2865144375
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.