It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
To present an approach that autonomously identifies and selects a self-selective optimal target for the purpose of enhancing learning efficiency to segment infected regions of the lung from chest computed tomography images. We designed a semi-supervised dual-branch framework for training, where the training set consisted of limited expert-annotated data and a large amount of coarsely annotated data that was automatically segmented based on Hu values, which were used to train both strong and weak branches. In addition, we employed the Lovasz scoring method to automatically switch the supervision target in the weak branch and select the optimal target as the supervision object for training. This method can use noisy labels for rapid localization during the early stages of training, and gradually use more accurate targets for supervised training as the training progresses. This approach can utilize a large number of samples that do not require manual annotation, and with the iterations of training, the supervised targets containing noise become closer and closer to the fine-annotated data, which significantly improves the accuracy of the final model.
Results
The proposed dual-branch deep learning network based on semi-supervision together with cost-effective samples achieved 83.56 ± 12.10 and 82.67 ± 8.04 on our internal and external test benchmarks measured by the mean Dice similarity coefficient (DSC). Through experimental comparison, the DSC value of the proposed algorithm was improved by 13.54% and 2.02% on the internal benchmark and 13.37% and 2.13% on the external benchmark compared with U-Net without extra sample assistance and the mean-teacher frontier algorithm, respectively.
Conclusion
The cost-effective pseudolabeled samples assisted the training of DL models and achieved much better results compared with traditional DL models with manually labeled samples only. Furthermore, our method also achieved the best performance compared with other up-to-date dual branch structures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer