It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Microbial infections cause serious health problems especially with the rising antibiotic resistance which accounts for about 700,000 human deaths annually. Antibiotics which target bacterial death encounter microbial resistance with time, hence, there is an urgent need for the search of antimicrobial substances which target disruption of virulence factors such as biofilm and quorum sensing (QS) with selective pressure on the pathogens so as to avoid resistance.
Methods
Natural products are suitable leads for antimicrobial drugs that can inhibit bacterial biofilms and QS. Twenty compounds isolated from the medicinal plant Gambeya lacourtiana were evaluated for their antibiofilm and anti-quorum sensing effects against selected pathogenic bacteria.
Results
Most of the compounds inhibited violacein production in Chromobacterium violaceum CV12472 and the most active compound, Epicatechin had 100% inhibition at MIC (Minimal Inhibitory Concentration) and was the only compound to inhibit violacein production at MIC/8 with percentage inhibition of 17.2 ± 0.9%. Since the bacteria C. violaceum produces violacein while growing, the inhibition of the production of this pigment reflects the inhibition of signal production. Equally, some compounds inhibited violacein production by C. violaceum CV026 in the midst of an externally supplied acylhomoserine lactone, indicating that they disrupted signal molecule reception. Most of the compounds exhibited biofilm inhibition on Staphyloccocus aureus, Escherichia coli and Candida albicans and it was observed that the Gram-positive bacteria biofilm was most susceptible. The triterpenoids bearing carboxylic acid group, the ceramide and epicatechin were the most active compounds compared to others.
Conclusion
Since some of the compounds disrupted QS mediated processes in bacteria, it indicates that this plant is a source of antibiotics drugs that can reduce microbial resistance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer