It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Bloodstream infections (BSIs) are a significant burden on the global population and represent a key area of focus in the hospital environment. Blood culture (BC) testing is the standard diagnostic test utilised to confirm the presence of a BSI. However, current BC testing practices result in low positive yields and overuse of the diagnostic test. Diagnostic stewardship research regarding BC testing is increasing, and becoming more important to reduce unnecessary resource expenditure and antimicrobial use, especially as antimicrobial resistance continues to rise. This study aims to establish a machine learning (ML) pipeline for BC outcome prediction using data obtained from routinely analysed blood samples, including complete blood count (CBC), white blood cell differential (DIFF), and cell population data (CPD) produced by Sysmex XN-2000 analysers.
Methods
ML models were trained using retrospective data produced between 2018 and 2019, from patients at Sir Charles Gairdner hospital, Nedlands, Western Australia, and processed at Pathwest Laboratory Medicine, Nedlands. Trained ML models were evaluated using stratified 10-fold cross validation.
Results
Two ML models, an XGBoost model using CBC/DIFF/CPD features with boruta feature selection (BFS) , and a random forest model trained using CBC/DIFF features with BFS were selected for further validation after obtaining AUC scores of \(0.76 \pm 0.04\) and \(0.75 \pm 0.04\) respectively using stratified 10-fold cross validation. The XGBoost model obtained an AUC score of 0.76 on a internal validation set. The random forest model obtained AUC scores of 0.82 and 0.76 on internal and external validation datasets respectively.
Conclusions
We have demonstrated the utility of using an ML pipeline combined with CBC/DIFF, and CBC/DIFF/CPD feature spaces for BC outcome prediction. This builds on the growing body of research in the area of BC outcome prediction, and provides opportunity for further research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer