It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Due to the influence of extreme weather, the environment in China’s main cotton-producing areas is prone to drought stress conditions, which affect the growth and development of cotton and lead to a decrease in cotton yield.
Results
In this study, 188 upland cotton germplasm resources were phenotyped for data of 8 traits (including 3 major yield traits) under drought conditions in three environments for two consecutive years. Correlation analysis revealed significant positive correlations between the three yield traits. Genetic analysis showed that the estimated heritability of the seed cotton index (SC) under drought conditions was the highest (80.81%), followed by that of boll weight (BW) (80.64%) and the lint cotton index (LC) (70.49%) With genome-wide association study (GWAS) analysis, a total of 75 quantitative trait loci (QTLs) were identified, including two highly credible new QTL hotspots. Three candidate genes (Gh_D09G064400, Gh_D10G261000 and Gh_D10G254000) located in the two new QTL hotspots, QTL51 and QTL55, were highly expressed in the early stage of fiber development and showed significant correlations with SC, LC and BW. The expression of three candidate genes in two extreme materials after drought stress was analyzed by qRT-PCR, and the expression of these two materials in fibers at 15, 20 and 25 DPA. The expression of these three candidate genes was significantly upregulated after drought stress and was significantly higher in drought-tolerant materials than in drought-sensitive materials. In addition, the expression levels of the three candidate genes were higher in the early stage of fiber development (15 DPA), and the expression levels in drought-tolerant germplasm were higher than those in drought-sensitive germplasm. These three candidate genes may play an important role in determining cotton yield under drought conditions.
Conclusions
This study is helpful for understanding the regulatory genes affecting cotton yield under drought conditions and provides germplasm and candidate gene resources for breeding high-yield cotton varieties under these conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer