It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
This study aims to investigate the association between sleep quality and infertility among women and to explore the mediating effects of DNA methylation in this association.
Methods
This study is a population-based case–control study. The relationship between sleep quality and infertility was investigated in women with anovulatory infertility (n = 43) and healthy controls (n = 43). Genome-wide DNA methylation was profiled from peripheral blood samples using the Illumina Infinium Human Methylation 850k BeadChip. Differentially methylated CpGs between cases and controls were identified using the ChAMP R package. The mediating effect of DNA methylation between sleep quality and infertility among women was investigated using the Bayesian estimation method provided by the R package “mediation”.
Results
The survey included 86 women of reproductive age, with 43 participants each in the case and control groups. The average age of the women was 27.6 ± 2.8 years (case group: 27.8 ± 3.0 years, control group: 27.4 ± 2.7 years). A total of 262 differentially methylated CpGs corresponding to 185 genes were identified. Difficulty falling asleep was a risk factor for infertility in women (OR = 3.69, 95%CI = 1.14, 11.99), and a causal mediation effect of DNA methylation CpGs was found. The mediating effect coefficient for cg08298632 was 0.10 (95%CI = 0.01–0.22), and the proportion of the total effect mediated by this methylation site increased to 64.3%.
Conclusion
These results suggest that DNA methylation CpGs (cg08298632) play a significant role in the relationship between difficulty falling asleep and infertility in females. These findings contribute to our understanding of the underlying mechanisms that connect difficulty falling asleep and infertility in women. Further studies are necessary to fully understand the biological significance and potential therapeutic applications of these findings. The identified DNA methylation sites provide new and valuable insights and potential targets for future studies aiming to prevent and treat female infertility.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer