It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Prenatal air pollution exposure may increase risk for childhood obesity. However, few studies have evaluated in utero growth measures and infant weight trajectories. This study will evaluate the associations of prenatal exposure to ambient air pollutants with weight trajectories from the 3rd trimester through age 2 years.
Methods
We studied 490 pregnant women who were recruited from the Maternal and Development Risks from Environmental and Social Stressors (MADRES) cohort, which comprises a low-income, primarily Hispanic population in Los Angeles, California. Nitrogen dioxide (NO2), particulate matter < 10 µm (PM10), particulate matter < 2.5 µm (PM2.5), and ozone (O3) concentrations during pregnancy were estimated from regulatory air monitoring stations. Fetal weight was estimated from maternal ultrasound records. Infant/child weight measurements were extracted from medical records or measured during follow-up visits. Piecewise spline models were used to assess the effect of air pollutants on weight, overall growth, and growth during each period.
Results
The mean (SD) prenatal exposure concentrations for NO2, PM2.5, PM10, and O3 were 16.4 (2.9) ppb, 12.0 (1.1) μg/m3, 28.5 (4.7) μg/m3, and 26.2 (2.9) ppb, respectively. Comparing an increase in prenatal average air pollutants from the 10th to the 90th percentile, the growth rate from the 3rd trimester to age 3 months was significantly increased (1.55% [95%CI 1.20%, 1.99%] for PM2.5 and 1.64% [95%CI 1.27%, 2.13%] for NO2), the growth rate from age 6 months to age 2 years was significantly decreased (0.90% [95%CI 0.82%, 1.00%] for NO2), and the attained weight at age 2 years was significantly lower (− 7.50% [95% CI − 13.57%, − 1.02%] for PM10 and − 7.00% [95% CI − 11.86%, − 1.88%] for NO2).
Conclusions
Prenatal ambient air pollution was associated with variable changes in growth rate and attained weight from the 3rd trimester to age 2 years. These results suggest continued public health benefits of reducing ambient air pollution levels, particularly in marginalized populations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer