It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
To explore the distinguishing diagnostic value and clinical application potential of deep neural networks (DNN) for pathological images of thyroid tumors.
Methods
A total of 799 pathological thyroid images of 559 patients with thyroid tumors were retrospectively analyzed. The pathological types included papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), follicular thyroid carcinoma (FTC), adenomatous goiter, adenoma, and normal thyroid gland. The dataset was divided into a training set and a test set. Resnet50, Resnext50, EfficientNet, and Densenet121 were trained using the training set data and tested with the test set data to determine the diagnostic efficiency of different pathology types and to further analyze the causes of misdiagnosis.
Results
The recall, precision, negative predictive value (NPV), accuracy, specificity, and F1 scores of the four models ranged from 33.33% to 100.00%. The area under curve (AUC) ranged from 0.822 to 0.994, and the Kappa coefficient ranged from 0.7508 to 0.7713. However, the performance of diagnosing FTC, adenoma, and adenomatous goiter was slightly inferior to other types of pathological tissues.
Conclusion
The DNN model achieved satisfactory results in the task of classifying thyroid tumors by learning thyroid pathology images. These results indicate the potential of the DNN model for the efficient diagnosis of thyroid tumor histopathology.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer