Abstract

A disorder of cholesterol homeostasis is one of the main initiating factors in the progression of atherosclerosis (AS). Metabolism and removal of excess cholesterol facilitates the prevention of foam cell formation. However, the failure of treatment with drugs (e.g. methotrexate, MTX) to effectively regulate progression of disease may be related to the limited drug bioavailability and rapid clearance by immune system. Thus, based on the inflammatory lesion “recruitment” properties of macrophages, MTX nanoparticles (MTX NPs) camouflaged with macrophage membranes (MM@MTX NPs) were constructed for the target to AS plaques. MM@MTX NPs exhibited a uniform hydrodynamic size around ~ 360 nm and controlled drug release properties (~ 72% at 12 h). After the macrophage membranes (MM) functionalized “homing” target delivery to AS plaques, MM@MTX NPs improved the solubility of cholesterol by the functionalized β-cyclodextrin (β-CD) component and significantly elevate cholesterol efflux by the loaded MTX mediated the increased expression levels of ABCA1, SR-B1, CYP27A1, resulting in efficiently inhibiting the formation of foam cells. Furthermore, MM@MTX NPs could significantly reduce the area of plaque, aortic plaque and cholesterol crystals deposition in ApoE−/− mice and exhibited biocompatibility. It is suggested that MM@MTX NPs were a safe and efficient therapeutic platform for AS.

Details

Title
Biomimetic nanoparticles to enhance the reverse cholesterol transport for selectively inhibiting development into foam cell in atherosclerosis
Author
Zhu, Li; Li, Hongjiao; Li, Jiyu; Zhong, Yuan; Wu, Shuai; Meng, Yan; Ni, Sheng; Zhang, Kun; Wang, Guixue; Qu, Kai; Yang, Deqin; Qin, Xian; Wu, Wei
Pages
1-22
Section
Research
Publication year
2023
Publication date
2023
Publisher
BioMed Central
e-ISSN
14773155
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2865420028
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.