It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Although submerged membrane bioreactor (MBR) are widely used in treating municipal wastewater and recovery of potential resources, membrane operational parameters and membrane fouling control remain debated issues. In this study, the treatment of municipal wastewater by MBR at high-biomass sludge (MLSS (g/L) ranging from 5.4 g/L to 16.1 g/L) was assessed at an organic loading rates (OLRs) ranging from 0.86 to 3.7 kg COD/m3d. The correlation between trans-membrane pressure and total fouling resistance was thoroughly investigated in this study. According to the findings, greater OLRs of 0.86 to 3.7 kg COD/m3d caused a decrease in COD, BOD, and NH4–N removal efficiency, and higher OLRs of 3.7 kg COD/m3d resulted in a higher increase in total fouling resistance (Rt). The economic study of using the MBR system proved that for a designed flow rate of 20 m3/d, the payback period from using the treated wastewater will be 7.98 years, which confirms the economic benefits of using this MBR for treating municipal wastewater. In general, understanding the challenges facing the efficiency of MBR would improve its performance and, consequently, the sustainability of wastewater reclamation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Research Centre, Water Pollution Research Department, Giza, Egypt (GRID:grid.419725.c) (ISNI:0000 0001 2151 8157)
2 National Research Centre, Cellulose and Paper Department, Giza, Egypt (GRID:grid.419725.c) (ISNI:0000 0001 2151 8157)