It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Perfect absorbers can be used in photodetectors, thermal imaging, microbolometers, and thermal photovoltaic solar energy conversions. The spectrum of Mid-infrared (MIR) wavelengths offers numerous advantages across a wide range of applications. In this work, we propose a fractal MIR broadband absorber which is composed of three layers: metal, dielectric, and metal (MDM), with the metal being considered as n-type doped silicon (D-Si) and the dielectric is silicon carbide (SiC). The architectural design was derived from the Sierpinski carpet fractal, and different building blocks were simulated to attain optimal absorption. The 3D finite element method (FEM) approach using COMSOL Multiphysics software is used to obtain numerical results. The suggested fractal absorber exhibits high absorption enhancement for MIR in the range between 3 and 9 µm. D-Si exhibits superior performance compared to metals in energy harvesting applications that utilize plasmonics at the mid-infrared range. Typically, semiconductors exhibit rougher surfaces than noble metals, resulting in lower scattering losses. Moreover, silicon presents various advantages, including compatibility with complementary metal–oxide–semiconductor (CMOS) and simple manufacturing through conventional silicon fabrication methods. In addition, the utilization of doped silicon material in the mid-IR region facilitates the development of microscale integrated plasmonic devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The American University in Cairo, Department of Physics, School of Sciences and Engineering, New Cairo, Egypt (GRID:grid.252119.c) (ISNI:0000 0004 0513 1456)
2 The American University in Cairo, Department of Physics, School of Sciences and Engineering, New Cairo, Egypt (GRID:grid.252119.c) (ISNI:0000 0004 0513 1456); Ain Shams University, Department of Physics, Faculty of Science, Cairo, Egypt (GRID:grid.7269.a) (ISNI:0000 0004 0621 1570)




