It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nitroso-compounds are potentially mutagenic and carcinogenic compounds due to their ability to alkylate DNA bases. One of the most common sources of human exposure to nitroso-compounds is their formation in the acidic environment of the stomach by the reaction between electron-rich molecules present in the lumen and sodium nitrite ingested in the diet. To date, the formation of nitroso-compounds by the reaction of nitrite with food components has been investigated in depth, but little attention has been paid to substances secreted in the stomach, such as dopamine or serotonin, whose reaction products with nitrite have proven mutagenic properties. In this article, we present a kinetic study with UV–visible spectroscopy of the nitrosation reactions of both molecules, as well as of L-tyrosine, the amino-acid precursor of dopamine. We determined the kinetic parameters and reaction mechanisms for the reactions, studying the influence of the reactants concentration, pH, temperature, and ionic strength on the reaction rate. In all cases, the favoured reaction product was a stable nitroso-compound. Serotonin, the molecule whose product was the most mutagenic, underwent two consecutive nitrosation reactions. These findings suggest that additional biological research is needed to understand how this reaction alters the function of these neurotransmitters as well as the potentially toxic effects they may have once nitrosated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Universidad de Salamanca, Departamento de Química Física, Salamanca, Spain (GRID:grid.11762.33) (ISNI:0000 0001 2180 1817); University of Glasgow, School of Chemistry, Glasgow, UK (GRID:grid.8756.c) (ISNI:0000 0001 2193 314X)
2 Universidad de Salamanca, Departamento de Química Física, Salamanca, Spain (GRID:grid.11762.33) (ISNI:0000 0001 2180 1817)
3 Universidad de Salamanca, Departamento de Química Orgánica, Salamanca, Spain (GRID:grid.11762.33) (ISNI:0000 0001 2180 1817)