It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The majority of soccer analysis studies investigates specific scenarios through the implementation of computational techniques, which involve the examination of either spatiotemporal position data (movement of players and the ball on the pitch) or event data (relating to significant situations during a match). Yet, only a few applications perform a joint analysis of both data sources despite the various involved advantages emerging from such an approach. One possible reason for this is a non-systematic error in the event data, causing a temporal misalignment of the two data sources. To address this problem, we propose a solution that combines the SwiftEvent online algorithm (Gensler and Sick in Pattern Anal Appl 21:543–562, 2018) with a subsequent refinement step that corrects pass timestamps by exploiting the statistical properties of passes in the position data. We evaluate our proposed algorithm on ground-truth pass labels of four top-flight soccer matches from the 2014/15 season. Results show that the percentage of passes within half a second to ground truth increases from 14 to 70%, while our algorithm also detects localization errors (noise) in the position data. A comparison with other models shows that our algorithm is superior to baseline models and comparable to a deep learning pass detection method (while requiring significantly less data). Hence, our proposed lightweight framework offers a viable solution that enables groups facing limited access to (recent) data sources to effectively synchronize passes in the event and position data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 German Sport University Cologne, Institute of Exercise Training and Sport Informatics, Cologne, Germany (GRID:grid.27593.3a) (ISNI:0000 0001 2244 5164)
2 Leibniz University Hannover, L3S Research Center, Hannover, Germany (GRID:grid.9122.8) (ISNI:0000 0001 2163 2777); TIB—Leibniz Information Centre for Science and Technology, Hannover, Germany (GRID:grid.461819.3) (ISNI:0000 0001 2174 6694)