Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Steel construction is used more often these days as an alternative to the R.C.C. when lightweight, high-strength, large-span structures with a faster erection are required. Extensive studies have been conducted by researchers to study the seismic performance of reinforced concrete and steel structures, both in terms of elastic and inelastic behavior. Composite construction is also a recent advancement in the building industry with similar advantages. However, no emphasis has been given to the comparison between the inelastic behavior of steel and composite structures when subjected to lateral loads. This study compares the inelastic behavior of steel and a composite frame designed to have the same plastic moment capacity for structural members. The responses, such as the formation of hinges, story drifts, story displacements, lateral stiffness, ductility, maximum strength, energy dissipated, joint accelerations, and performance points, are compared with the aid of the building analysis and design software ETABS-18. For this, response spectrum analysis, pushover analysis, and nonlinear direct integration time history analysis have been performed on both frames. For design and analysis, international codes, such as IS 800-2007, IS 875 (Part I, II, IV), IS 1893-2002, AISC 360 (16 and 10), and FEMA 440, have been used. Part of this study also aims at comparing the response of these frames when subjected to near-field and far-field earthquakes. It can be concluded from the results that the post-yield performance of the composite frame is superior to that of the steel frame when seismically excited.

Details

Title
Inelastic Behavior of Steel and Composite Frame Structure Subjected to Earthquake Loading
Author
Gajbhiye, P D 1 ; Mashaan, Nuha S 2   VIAFID ORCID Logo  ; Bhaiya, V 3 ; Wankhade, Rajan L 4   VIAFID ORCID Logo  ; Vishnu, S P 3 

 Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India; [email protected] 
 School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia 
 Civil Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India; [email protected] (V.B.); [email protected] (S.P.V.) 
 Applied Mechanics Department, Government Polytechnic, Bramhapuri 441206, India 
First page
899
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
26733161
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869216176
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.