Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the pursuit of longevity and healthspan, we are challenged with first overcoming chronic diseases of ageing: cardiovascular disease, hypertension, cancer, dementias, type 2 diabetes mellitus. These are hyperinsulinaemia diseases presented in different tissue types. Hyperinsulinaemia reduces endogenous antioxidants, via increased consumption and reduced synthesis. Hyperinsulinaemia enforces glucose fuelling, consuming 4 NAD+ to produce 2 acetyl moieties; beta-oxidation, ketolysis and acetoacetate consume 2, 1 and 0, respectively. This decreases sirtuin, PARPs and oxidative management capacity, leaving reactive oxygen species to diffuse to the cytosol, upregulating aerobic glycolysis, NF-kB and cell division signalling. Also, oxidising cardiolipin, reducing oxidative phosphorylation (OXPHOS) and apoptosis ability; driving a tumourigenic phenotype. Over time, increasing senescent/pathological cell populations occurs, increasing morbidity and mortality. Beta-hydroxybutyrate, an antioxidant, metabolite and signalling molecule, increases synthesis of antioxidants via preserving NAD+ availability and enhancing OXPHOS capacity. Fasting and ketogenic diets increase ketogenesis concurrently decreasing insulin secretion and demand; hyperinsulinaemia inhibits ketogenesis. Lifestyles that maintain lower insulin levels decrease antioxidant catabolism, additionally increasing their synthesis, improving oxidative stress management and mitochondrial function and, subsequently, producing healthier cells. This supports tissue and organ health, leading to a better healthspan, the first challenge that must be overcome in the pursuit of youthful longevity.

Details

Title
Bio-Hacking Better Health—Leveraging Metabolic Biochemistry to Maximise Healthspan
Author
Cooper, Isabella D  VIAFID ORCID Logo  ; Kyriakidou, Yvoni  VIAFID ORCID Logo  ; Petagine, Lucy  VIAFID ORCID Logo  ; Edwards, Kurtis  VIAFID ORCID Logo  ; Elliott, Bradley T  VIAFID ORCID Logo 
First page
1749
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869217758
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.