Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pests and diseases significantly impact the quality and yield of maize. As a result, it is crucial to conduct disease diagnosis and identification for timely intervention and treatment of maize pests and diseases, ultimately enhancing the quality and economic efficiency of maize production. In this study, we present an enhanced maize pest identification model based on ResNet50. The objective was to achieve efficient and accurate identification of maize pests and diseases. By utilizing convolution and pooling operations for extracting shallow-edge features and compressing data, we introduced additional effective channels (environment–cognition–action) into the residual network module. This step addressed the issue of network degradation, establishes connections between channels, and facilitated the extraction of crucial deep features. Finally, experimental validation was performed to achieve 96.02% recognition accuracy using the ResNet50 model. This study successfully achieved the recognition of various maize pests and diseases, including maize leaf blight, Helminthosporium maydis, gray leaf spot, rust disease, stem borer, and corn armyworm. These results offer valuable insights for the intelligent control and management of maize pests and diseases.

Details

Title
Enhancing Corn Pest and Disease Recognition through Deep Learning: A Comprehensive Analysis
Author
Xu, Wenqing 1 ; Li, Weikai 1 ; Wang, Liwei 1 ; Pompelli, Marcelo F 2   VIAFID ORCID Logo 

 School of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150006, China; [email protected] (W.X.); [email protected] (L.W.) 
 Grupo Regional de Investigación Participativa de los Pequeños Productores de la Costa Atlantica, Universidad de Córdoba, Montería 360002, Córdoba, Colombia 
First page
2242
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869233473
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.