Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, a finite element model of concrete-filled steel tubular (CFST) columns under compression and lateral impact is developed and validated against previous experiments. After analyzing the influence of axial compression on the impact performance of CFST columns, the effects of eccentricity, material strength, and steel ratio on the dynamic compression-bending performances of CFST columns subjected to lateral impact are discussed. The simulated results show that at different axial compression ratios, CFST columns show overall bending failure under lateral impact. The axial force ratio below 0.2 shows a positive effect on the impact resistance of CFST columns, otherwise the axial force would degrade the impact resistance of CFST columns. Eccentricity has a negative effect on the dynamic compression-bending performance of CFST columns. The increase in the concrete strength has little effect on the dynamic compression-bending performance of the CFST columns under lateral impact and eccentric compression. The increases in steel strength and steel ratio can improve the dynamic compression-bending performances of the CFST columns under lateral impact and eccentric compression. Even though the prediction formula for the dynamic compression-bending performance of CFST columns shows good fitness with the simulated results, it is modified to have sufficient strength reserves for design applications.

Details

Title
Dynamic Compression-Bending Performance of Concrete-Filled Steel Tubular Columns under Lateral Impact
Author
Xu, Man 1 ; Ding, Zhichao 1 ; Xianjuan Hao 2 ; Gao, Shan 3   VIAFID ORCID Logo 

 School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China; [email protected] (M.X.); 
 Design and Development Department, Center International Group Co., Ltd., Beijing 100176, China 
 Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China 
First page
2289
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869306708
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.