Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The proliferation of immersive services, including virtual reality/augmented reality, holographic content, and the metaverse, has led to an increase in the complexity of communication networks, and consequently, the complexity of network management. Recently, digital twin network technology, which applies digital twin technology to the field of communication networks, has been predicted to be an effective means of managing complex modern networks. In this paper, a digital twin network data pipeline architecture is proposed that demonstrates an integrated structure for flow within the digital twin network and network modeling from a data perspective. In addition, a network traffic modeling technique using data feature extraction techniques is proposed to realize the digital twin network, which requires the use of massive streaming data. The proposed method utilizes the data generated in the OMNeT++ environment and verifies that the learning time is reduced by approximately 25% depending on the feature extraction interval, while the accuracy remains similar.

Details

Title
Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture
Author
Shin, Hyeju  VIAFID ORCID Logo  ; Oh, Seungmin  VIAFID ORCID Logo  ; Abubakar Isah; Aliyu, Ibrahim; Park, Jaehyung; Kim, Jinsul  VIAFID ORCID Logo 
First page
3957
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869330232
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.