Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soluble noble metal salts are widely used for loading noble metals as nano-catalysts in many applications. In this paper, Pt-SnO2 composite nanoceramics were prepared from SnO2 nanoparticles and H2PtCl6 using two Pt loading methods separately: for the solution reduction method, a H2PtCl6 solution was added to a suspension of SnO2 and zinc powder to form Pt on SnO2 nanoparticles, and for the impregnation method, Pt was formed from H2PtCl6 in the course of sintering. Although a series of samples prepared using both Pt loading methods showed a solid response to H2 at room temperature, the ones prepared using the solution reduction method exhibited much better room-temperature hydrogen-sensing characteristics. For two samples of 0.5 wt% Pt and sintered at 825 °C, the response value for the sample prepared using the solution reduction method was 9700 to 1% H2–20% O2-N2, which was much larger than the value of 145 for the sample prepared using the impregnation method. Samples prepared using the two Pt loading methods have similar microstructures characterized via XRD, FESEM, EDS, TEM, and HRTEM. However, the residual chlorine content in those using the impregnation method was higher than those using the solution reduction method according to the analysis. It is proposed that the striking difference in room-temperature hydrogen sensing characteristics among samples prepared using these two different Pt loading methods separately resulted from their different chlorine removal processes. This study demonstrates the importance of a proper method for loading noble metals from their soluble salts as nano-catalysts in many applications.

Details

Title
Room-Temperature Hydrogen-Sensitive Pt-SnO2 Composite Nanoceramics: Contrasting Roles of Pt Nano-Catalysts Loaded via Two Different Methods
Author
Zhao, Jieting 1 ; Song, Jiannan 2 ; Lu, Xilai 2 ; Wu, Menghan 2 ; Zhiqiao Yan 3 ; Chen, Feng 3 ; Chen, Wanping 2 

 Engineering Research Centre for Deep Processing of Rare Metals, School of Engineering, Changchun Normal University, Changchun 130032, China; [email protected]; School of Physics and Technology, Wuhan University, Wuhan 430072, China 
 School of Physics and Technology, Wuhan University, Wuhan 430072, China 
 Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China 
First page
366
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869339096
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.