Abstract

Antiferromagnets have large potential for ultrafast coherent switching of magnetic order with minimum heat dissipation. In materials such as Mn2Au and CuMnAs, electric rather than magnetic fields may control antiferromagnetic order by Néel spin-orbit torques (NSOTs). However, these torques have not yet been observed on ultrafast time scales. Here, we excite Mn2Au thin films with phase-locked single-cycle terahertz electromagnetic pulses and monitor the spin response with femtosecond magneto-optic probes. We observe signals whose symmetry, dynamics, terahertz-field scaling and dependence on sample structure are fully consistent with a uniform in-plane antiferromagnetic magnon driven by field-like terahertz NSOTs with a torkance of (150 ± 50) cm2 A−1 s−1. At incident terahertz electric fields above 500 kV cm−1, we find pronounced nonlinear dynamics with massive Néel-vector deflections by as much as 30°. Our data are in excellent agreement with a micromagnetic model. It indicates that fully coherent Néel-vector switching by 90° within 1 ps is within close reach.

Néel spin-orbit torques can occur in antiferromagnets with broken inversion symmetry, such as Mn2Au, and have garnered significant interest recently, as they allow for the electrical control of the antiferromagnetic ordering. Here, Behovits et al. apply intense terahertz electric fields to Mn2Au and observe the deflection of the Néel vector on ultrafast time scales due to Néel spin-orbit torques.

Details

Title
Terahertz Néel spin-orbit torques drive nonlinear magnon dynamics in antiferromagnetic Mn2Au
Author
Behovits, Y. 1   VIAFID ORCID Logo  ; Chekhov, A. L. 1   VIAFID ORCID Logo  ; Bodnar, S. Yu. 2 ; Gueckstock, O. 1   VIAFID ORCID Logo  ; Reimers, S. 3   VIAFID ORCID Logo  ; Lytvynenko, Y. 4   VIAFID ORCID Logo  ; Skourski, Y. 5 ; Wolf, M. 6   VIAFID ORCID Logo  ; Seifert, T. S. 1 ; Gomonay, O. 3   VIAFID ORCID Logo  ; Kläui, M. 3   VIAFID ORCID Logo  ; Jourdan, M. 3   VIAFID ORCID Logo  ; Kampfrath, T. 1   VIAFID ORCID Logo 

 Freie Universität Berlin, Department of Physics, Berlin, Germany (GRID:grid.14095.39) (ISNI:0000 0000 9116 4836); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Physical Chemistry, Berlin, Germany (GRID:grid.418028.7) (ISNI:0000 0001 0565 1775) 
 Johannes-Gutenberg-Universität Mainz, Institute of Physics, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111); Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Heidelberg, Germany (GRID:grid.7700.0) (ISNI:0000 0001 2190 4373) 
 Johannes-Gutenberg-Universität Mainz, Institute of Physics, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111) 
 Johannes-Gutenberg-Universität Mainz, Institute of Physics, Mainz, Germany (GRID:grid.5802.f) (ISNI:0000 0001 1941 7111); Institute of Magnetism of the NAS and MES of Ukraine, Kyiv, Ukraine (GRID:grid.466779.d) (ISNI:0000 0004 0489 0602) 
 Helmholtz-Zentrum Dresden-Rossendorf, Hochfeld-Magnetlabor Dresden (HLD-EMFL), Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612) 
 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Physical Chemistry, Berlin, Germany (GRID:grid.418028.7) (ISNI:0000 0001 0565 1775) 
Pages
6038
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2869395939
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.