It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the current study, transcriptome profiles of mare endometrium, classified into categories I, IIA, and IIB according to Kenney and Doig, were compared using RNA sequencing, analyzed, and functionally annotated using in silico analysis. In the mild stage (IIA) of endometrosis compared to category I endometrium, differentially expressed genes (DEGs) were annotated to inflammation, abnormal metabolism, wound healing, and quantity of connective tissue. In the moderate stage (IIB) of endometrosis compared to category I endometrium, DEGs were annotated to inflammation, fibrosis, cellular homeostasis, mitochondrial dysfunction, and pregnancy disorders. Ingenuity pathway analysis (IPA) identified cytokines such as transforming growth factor (TGF)-β1, interleukin (IL)-4, IL-13, and IL-17 as upstream regulators of DEGs associated with cellular homeostasis, metabolism, and fibrosis signaling pathways. In vitro studies showed the effect of these cytokines on DEGs such as ADAMTS1, -4, -5, -9, and HK2 in endometrial fibroblasts at different stages of endometrosis. The effect of cytokines on ADAMTS members’ gene transcription in fibroblasts differs according to the severity of endometrosis. The identified transcriptomic changes associated with endometrosis suggest that inflammation and metabolic changes are features of mild and moderate stages of endometrosis. The changes of ADAMTS-1, -4, -5, -9, in fibrotic endometrium as well as in endometrial fibroblast in response to TGF-β1, IL-4, IL-13, and IL-17 suggest the important role of these factors in the development of endometrosis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Department of Reproductive Immunology and Pathology, Olsztyn, Poland (GRID:grid.433017.2) (ISNI:0000 0001 1091 0698)
2 University of Agriculture in Cracow, Center for Experimental and Innovative Medicine, Cracow, Poland (GRID:grid.410701.3) (ISNI:0000 0001 2150 7124)
3 University of Agriculture in Cracow, Department of Animal Reproduction, Anatomy and Genomics, Cracow, Poland (GRID:grid.410701.3) (ISNI:0000 0001 2150 7124)
4 University of Lisbon, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Lisbon, Portugal (GRID:grid.9983.b) (ISNI:0000 0001 2181 4263)